Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    TRANSPORT PROPERTY OF CELLULAR MEMBRANE

    Wei Lina, Yongbin Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-4, 2022, DOI:10.5098/hmt.18.48

    Abstract The cellular membrane of animal has the thickness normally between 5nm and 10nm and has the filtration nanopores with the diameters normally between 0.4nm and 1.2nm. The pressure drop and the critical power loss on the single nanopore for starting the wall slippage have been obtained. The wall slippage is sensitively raised with the pore radius reduction and has a linear dependence on the power loss on the pore. Without wall slippage, the water flow in the pore is much slower than the classical theory calculation; However it is far faster than the classical theory More >

  • Open Access

    ARTICLE

    WATER TRANSPORT IN CELLULAR CONNEXON OF HUMAN BODIES

    Mian Wang1, Yongbin Zhang2,*

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-5, 2021, DOI:10.5098/hmt.17.9

    Abstract There is the connexon between neighboring cells in human bodies, which normally has the cylindrical channels with the diameter about 1.5nm. The analysis is here derived for the water transport through such a narrow channel based on the nanoscale flow equation by considering the dynamic, interfacial slippage and non-continuum effects of the water. The calculation shows that when the intracellular fluids of the neighboring cells are not obviously different, there is no wall slippage in the connexon channel and the water flow rate through the channel is significantly smaller than that calculated from the classical… More >

Displaying 1-10 on page 1 of 2. Per Page