Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Brachypodium distachyon calcineurin B-like protein-interacting protein kinase, BdCIPK26, enhances plant adaption to drought and high salinity stress

    QINGCHEN LUO1,#,*, JIALU FENG2,#, XIUQI DENG1

    BIOCELL, Vol.47, No.5, pp. 1145-1158, 2023, DOI:10.32604/biocell.2023.027847 - 10 April 2023

    Abstract As sessile organisms, plants possess a complex system to cope with environmental changes. Ca2+ functions as a vital second messenger in the stress signaling of plants, and the CBL-interacting protein kinases (CIPKs) serve as essential elements in the plant Ca2+ signaling pathway. In this study, calcineurin B-like protein-interacting protein kinase 26 (BdCIPK26) from Brachypodium distachyon was characterized. Overexpression of BdCIPK26 enhanced tolerance to drought and salt stress of transgenic plants. Further investigations revealed that BdCIPK26 participated in abscisic acid (ABA) signaling, conferred hypersensitivity to exogenous ABA in transgenic plants, and promoted endogenous ABA biosynthesis. Moreover, BdCIPK26 was found More >

  • Open Access

    ARTICLE

    Overexpression of a Glycosyltransferase Gene from a Metabolically Poly-Resistant Beckmannia syzigachne Population Alters Growth and Confers Herbicide Resistance to Brachypodium distachyon

    Yizhao Huang1, Nannan Li2, Deya Wang4, Jian Du1, Weitang Liu3, Jinxin Wang3,*, Wei Li1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.4, pp. 761-772, 2022, DOI:10.32604/phyton.2022.018462 - 09 December 2021

    Abstract Beckmannia syzigachne is a noxious weed for rice-wheat rotations in China. The B. syzigachne (AH-02) population evolved metabolic resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl. To investigate the function of GT73C1 in this population, the GT73C1 gene was amplified by reverse transcription-polymerase chain reaction, and the sequence was 100% consistent with the transcriptome data. Its phylogenetic tree was displayed and annotated using FigTree v1.4.4. The plant overexpression vector of GT73C1 gene was constructed and used to transform Brachypodium distachyon plants. Furthermore, the expression of GT73C1 was significantly induced by fenoxaprop-P-ethyl and mesosulfuron-methyl, which was consistent with the findings from the whole plant More >

Displaying 1-10 on page 1 of 2. Per Page