Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (617)
  • Open Access

    ARTICLE

    Saccharification of Paper Sludge and Fiber Dust Wastes from the Tissue Paper Industry by Maximyze® Enzymes

    Enas Hassan1, Wafaa Abou-Elseoud1,2, Samar El-Mekkawi3, Mohammad Hassan1,2,*

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0030

    Abstract Saccharification of lignocellulosic wastes is the bottleneck of different bio-based chemical industries. Using enzymes for saccharification of lignocellulosic materials has several advantages over using chemicals. In the current work, the application of the Maximyze® enzyme system, which is industrially used in papermaking, was investigated in the saccharification of paper sludge and fiber dust wastes from the tissue paper industry. For optimizing the saccharification process, the effects of the consistency %, enzyme loading, and incubation time were studied and optimized using the Response Surface Methodology. The effect of these factors on the weight loss of paper… More > Graphic Abstract

    Saccharification of Paper Sludge and Fiber Dust Wastes from the Tissue Paper Industry by Maximyze® Enzymes

  • Open Access

    ARTICLE

    Amphiphilic Carboxymethyl Cellulose Stearate for Pickering Emulsions and Antimicrobial Activity of Chrysanthemum Essential Oil

    Mohamed El-Sakhawy1,*, Sally A. Abdel-Halim2, Hebat-Allah S. Tohamy1, Hossam M. El-Masry3, Mona Mohamed AbdelMohsen2

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0024

    Abstract This study prepared and characterized amphiphilic carboxymethyl cellulose stearate (CMCS) recycled from sugarcane bagasse agro-waste (SB). The Fourier-transform infrared (FTIR) analysis confirmed cellulose, carboxymethyl cellulose (CMC), and CMCS structures, with CMCS showing increased H-bonding. X-ray diffraction analysis (XRD) revealed reduced crystallinity in CMC and CMCS. CMCS exhibited a hydrophobic nature but dispersed in water, enabling nanoemulsion formation. Optimal nanoemulsion was achieved with CMCS1, showing a particle size of 99 nm. Transmission electron microscopy (TEM) images revealed CMC’s honeycomb structure, transforming into spherical particles in CMCS1. Antimicrobial tests demonstrated strong activity of CMCS formulations against Escherichia coli More >

  • Open Access

    REVIEW

    Nanocellulose-Based Adhesives for Sustainable Wood-Polymer Composites: Recent Advancement and Future Perspective

    Amelia Hariry1, Efri Mardawati1,2,*, Apri Heri Iswanto3, Tati Karliati4, Lukmanul Hakim Zaini5,6,*, Muhammad Adly Rahandi Lubis2,7

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058359

    Abstract Nanocellulose-based adhesives are gaining attention as a viable alternative to conventional adhesives, offering benefits such as cost-effectiveness and scalability, which make them suitable for various sectors, including cosmetics, pharmaceuticals, biodegradable products, and as reinforcing agents in natural adhesives. This review delves into the current advancements in nanocellulose-based adhesive solutions for sustainable and eco-friendly wood composites, using systematic review methods and bibliometric analysis. Data were collected from the Scopus database, spanning from 2007 to 2024, and visualized using VOSviewer to highlight emerging trends in the field. The analysis revealed that nanocellulose shows great potential as a More >

  • Open Access

    REVIEW

    Research Progress of Nanotechnology on Efficient and Green Technologies for Wood Preservation: A Review

    Yuxin He1,#, Yixin Li2,#, Qiaoguang Li1, Wenqing Xiao1,*, Guijun Xie2,*

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058349

    Abstract Wood, recognized as a renewable and environmentally sustainable material, plays a crucial role as an alternative energy resource within the construction industry. However, it is highly susceptible to mold and decay fungi, which can lead to surface discoloration and potentially compromise the structural integrity of wood. The advancement of nanotechnology has introduced innovative strategies for wood protection, enhancing its performance while imparting additional properties. Various approaches including nanosized metals, polymer nanocomposite and coating treatments are actively being explored in this field. Furthermore, integrating bio-based materials with nanotechnology offers a green and sustainable method for wood More >

  • Open Access

    ARTICLE

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl2O4:Eu,Dy Phosphor

    Vitalii Chornii1,2,*, Serhii G. Nedilko1, Maxim Lazarenko1, Oleksandr Alekseev1, Mariia Sosnovs’ka1, Valerii Barbash3, Olga Yashchenko3, Syed Shabhi Haider4, Yaroslav Zhydachevskyy4, Andrzej Suchocki4

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058211

    Abstract The work deals with cellulose paper filled with nanocellulose and SrAl2O4:Eu,Dy oxide phosphor. It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained. The samples with the oxide demonstrate a long-lasting photoluminescence (PL) under sunlight and ultra-violet (UV) illumination. Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions. The short-wavelength part of the band is ascribed to the cellulose-related luminescence, while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl2O4:Eu,Dy phosphor. The dependency of the PL… More > Graphic Abstract

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl<sub>2</sub>O<sub>4</sub>:Eu,Dy Phosphor

  • Open Access

    REVIEW

    Recent Developments in Bioadhesives and Binders

    Hong Lei1, Xiaojian Zhou2, Antonio Pizzi3,*, Guanben Du2,*, Xuedong Xi2

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0048

    Abstract This review is composed of three main parts each of which is written by well-known top specialists that have been, in a way or other, also the main participants of the majority of the developments reported. Thus, after a general part covering the grand lines and more in-depth views of more recent tannin, lignin, carbohydrate and soy bioadhesives, some mix of the other bio raw materials with soy protein and soy flour and some other differently sourced bioadhesives for wood, this review presents a more in-depth part on starch-based wood adhesives and a more in-depth… More > Graphic Abstract

    Recent Developments in Bioadhesives and Binders

  • Open Access

    ARTICLE

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

    Flávia Naves Ferreira do Prado1, Michelle Garcia Gomes1, Marcela Piassi Bernardo1, Daniel Pasquini1,*, Anízio Márcio de Faria2, Luís Carlos de Morais3,*

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0014

    Abstract Alternative methods for biodiesel purification that focus on ease of operation, cost reduction, and elimination of contaminated residues or that are easier to treat have received more attention. The dry wash route was used as an alternative to the wet route in biodiesel production. Filter membranes were developed based on cellulose nanofibers as the matrix and sugarcane bagasse fibers or soy hulls, as reinforcement to the matrix, before and after two chemical treatments (carboxymethylation and regeneration with sulfuric acid). The filters were characterized by permeability capacity, morphology, wettability, porosity, SEM and mechanical properties. The filtered… More >

  • Open Access

    REVIEW

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (Piptadeniastrum africanum) in Cameroon

    John Nwoanjia1, Jean Jalin Eyinga Biwôlé1,2,*, Joseph Zobo Mfomo1, Evariste Fedoung Fongnzossie1, Antonio Pizzi2, Salomé Ndjakomo Essiane3, Achille Bernard Biwole1

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0005

    Abstract This review aims to identify the assets and limitations of Dabema (Piptadeniastrum africanum) as a sustainable alternative to traditional timber species for furniture and construction applications. Dabema is characterized by its high density and dimensional stability, meeting ASTM (American Society for Testing and Materials) standards for mechanical strength, which is essential for promoting its use. However, its limited availability in trade and ingrained habits of use are obstacles to its widespread commercialization. In addition, thermal and oleothermal treatments have shown great potential for improving the characteristics of this wood, although they require ongoing optimization and rigorous More > Graphic Abstract

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (<i>Piptadeniastrum africanum</i>) in Cameroon

  • Open Access

    ARTICLE

    Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste

    Pollawat Charoeythornkhajhornchai, Piyamas Saehia, Thidaporn Butchan, Nawapol Lertumpai, Worawut Muangrat*

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0017

    Abstract Herein, cure characteristics, morphology, and mechanical properties of natural rubber filled with activated carbon-based materials were investigated. Carbon-based materials were prepared from bagasse, coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300°C. As-synthesized carbon materials were characterized by optical microscopy (OM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) to analyze size distribution, morphology, and functional groups, respectively. OM and SEM analysis revealed that particles, flakes, and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials, while honeycomb-like carbon materials… More > Graphic Abstract

    Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste

  • Open Access

    REVIEW

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

    Abiodun Abdulhameed Amusa1,*, Anwar Johari1, Kamil Kayode Katibi2,3, Ibrahim Garba Shitu4,5, Abdulrahman Oyekanmi Adeleke6, Mohd Fairus Mohd Yasin7, Muhammad Thalhah Zainal8

    Journal of Renewable Materials, DOI:10.32604/jrm.2025.057487

    Abstract The increasing severity of air pollution necessitates more effective and sustained air filtration technology. Concurrently, the desire for more environmentally friendly, sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes. This review presents lignocellulosic biocomposite (LigBioComp) membranes as an alternative to traditional synthetic membranes. It focuses on their materials, fabrication, and functionalization techniques while exploring challenges and proposing methods for resourceful utilization. Renowned for their abundance and renewable nature, lignocellulosic materials consist of cellulose, hemicellulose, and lignin. Various applications can benefit from their antibacterial properties, large… More > Graphic Abstract

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

Displaying 111-120 on page 12 of 617. Per Page