Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (91)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Optimizing Internet of Things Device Security with a Globalized Firefly Optimization Algorithm for Attack Detection

    Arkan Kh Shakr Sabonchi*

    Journal on Artificial Intelligence, Vol.6, pp. 261-282, 2024, DOI:10.32604/jai.2024.056552 - 18 October 2024

    Abstract The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service (DDoS) attacks. The current growth rate in the number of Internet of Things (IoT) attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices. In this regard, the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices. We preprocessed two datasets, CICIDS and UNSW-NB15,… More >

  • Open Access

    ARTICLE

    An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms

    Haojie Yang, Xiang Wen, Peng Geng*

    Journal on Artificial Intelligence, Vol.6, pp. 283-300, 2024, DOI:10.32604/jai.2024.056303 - 18 October 2024

    Abstract To enhance the rationality of the layout of electric vehicle charging stations, meet the actual needs of users, and optimise the service range and coverage efficiency of charging stations, this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms. By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius, the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are… More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    ARTICLE

    Representation of HRTF Based on Common-Pole/Zero Modeling and Principal Component Analysis

    Wei Chen1,*, Xiaogang Wei2,*, Hongxu Zhang2, Wenpeng He2

    Journal on Artificial Intelligence, Vol.6, pp. 225-240, 2024, DOI:10.32604/jai.2024.052366 - 16 August 2024

    Abstract The Head-Related Transfer Function (HRTF) describes the effects of sound reflection and scattering caused by the environment and the human body when sound signals are transmitted from a source to the human ear. It contains a significant amount of auditory cue information used for sound localization. Consequently, HRTF renders 3D audio accurately in numerous immersive multimedia applications. Because HRTF is high-dimensional, complex, and nonlinear, it is a relatively large and intricate dataset, typically consisting of hundreds of thousands of samples. Storing HRTF requires a significant amount of storage space in practical applications. Based on this, More >

  • Open Access

    ARTICLE

    A Hybrid Query-Based Extractive Text Summarization Based on K-Means and Latent Dirichlet Allocation Techniques

    Sohail Muhammad1, Muzammil Khan2, Sarwar Shah Khan2,3,*

    Journal on Artificial Intelligence, Vol.6, pp. 193-209, 2024, DOI:10.32604/jai.2024.052099 - 07 August 2024

    Abstract Retrieving information from evolving digital data collection using a user’s query is always essential and needs efficient retrieval mechanisms that help reduce the required time from such massive collections. Large-scale time consumption is certain to scan and analyze to retrieve the most relevant textual data item from all the documents required a sophisticated technique for a query against the document collection. It is always challenging to retrieve a more accurate and fast retrieval from a large collection. Text summarization is a dominant research field in information retrieval and text processing to locate the most appropriate… More >

  • Open Access

    ARTICLE

    Leveraging Pre-Trained Word Embedding Models for Fake Review Identification

    Glody Muka1,*, Patrick Mukala1,2,*

    Journal on Artificial Intelligence, Vol.6, pp. 211-223, 2024, DOI:10.32604/jai.2024.049685 - 07 August 2024

    Abstract Reviews have a significant impact on online businesses. Nowadays, online consumers rely heavily on other people's reviews before purchasing a product, instead of looking at the product description. With the emergence of technology, malicious online actors are using techniques such as Natural Language Processing (NLP) and others to generate a large number of fake reviews to destroy their competitors’ markets. To remedy this situation, several researches have been conducted in the last few years. Most of them have applied NLP techniques to preprocess the text before building Machine Learning (ML) or Deep Learning (DL) models… More >

  • Open Access

    ARTICLE

    Enhancing Exam Preparation through Topic Modelling and Key Topic Identification

    Rudraneel Dutta*, Shreya Mohanty

    Journal on Artificial Intelligence, Vol.6, pp. 177-192, 2024, DOI:10.32604/jai.2024.050706 - 19 July 2024

    Abstract Traditionally, exam preparation involves manually analyzing past question papers to identify and prioritize key topics. This research proposes a data-driven solution to automate this process using techniques like Document Layout Segmentation, Optical Character Recognition (OCR), and Latent Dirichlet Allocation (LDA) for topic modelling. This study aims to develop a system that utilizes machine learning and topic modelling to identify and rank key topics from historical exam papers, aiding students in efficient exam preparation. The research addresses the difficulty in exam preparation due to the manual and labour-intensive process of analyzing past exam papers to identify… More >

  • Open Access

    ARTICLE

    Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection

    Kaveh Heidary*

    Journal on Artificial Intelligence, Vol.6, pp. 153-175, 2024, DOI:10.32604/jai.2024.050563 - 18 July 2024

    Abstract This paper provides a detailed mathematical model governing the operation of feedforward neural networks (FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding of stored information, and data integrity while in transit across networks. The paper reports on the application of neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber threats are R2L,… More >

  • Open Access

    ARTICLE

    Cardiovascular Disease Prediction Using Risk Factors: A Comparative Performance Analysis of Machine Learning Models

    Adil Hussain1,*, Ayesha Aslam2

    Journal on Artificial Intelligence, Vol.6, pp. 129-152, 2024, DOI:10.32604/jai.2024.050277 - 21 May 2024

    Abstract The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly. The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data. Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses. This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors. This study utilizes a variety of machine learning models, More >

Displaying 1-10 on page 1 of 91. Per Page