Open Access
ARTICLE
Sorghum Productivity and Its Farming Feasibility in Dryland Agriculture: Genotypic and Planting Distance Insights
1 Research Center for Food Crops, National Research and Innovation Agency, Jl. Raya Bogor-Jakarta, Cibinong Bogor, 16911, Indonesia
2 Research Center for Behavioral and Circular Economics, National Research and Innovation Agency, Jl. Jend. Gatot Subroto No. 10, Jakarta, 12710, Indonesia
3 Research Center for Food Technology and Processing, National Research and Innovation Agency, Jl. Jogja-Wonosari Km 31.5 Gading, Playen, Gunungkidul, Yogyakarta, 5586, Indonesia
4 Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, Cibinong, Kabupaten Bogor, 16915, Indonesia
* Corresponding Author: Arini Putri Hanifa. Email:
Phyton-International Journal of Experimental Botany 2024, 93(5), 1007-1021. https://doi.org/10.32604/phyton.2024.048770
Received 18 December 2023; Accepted 08 April 2024; Issue published 28 May 2024
Abstract
Sorghum (Sorghum bicolor L. Moench) is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa, India, and Latin America. The domestic sorghum market in Indonesia is still limited to the eastern region (East Nusa Tenggara, West Nusa Tenggara, Java, and South Sulawesi). Therefore, it is crucial to carry out sorghum research on drylands. This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland, Yogyakarta, Indonesia. In addition, the farm business analysis, including the feasibility of sorghum farming, was also examined. The research used a randomized complete block design (RCBD), arranged in a 5 × 4 factorial with 3 replicates. The first treatment consisted of 5 varieties (2 high-yielding varieties (Bioguma 1 and Kawali) and 3 local sorghum varieties (Plonco, Ketan Merah, and Hitam Wareng)). The second treatment consisted of 4 levels of planting distance, namely 50 × 20 cm, 60 × 20 cm, 70 × 15 cm, and 70 × 20 × 20 cm. Analysis of variance was used to analyze the data, where Duncan’s multiple range test (DMRT) was used post hoc. Plant height, panicle height, panicle width, panicle weight, stover weight, grains weight/plot, and productivity were significantly affected by sorghum varieties (p < 0.05). However, there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments. Ketan Merah had the highest height, panicle length, and panicle width, while Bioguma 1 had the highest stover weight, panicle weight, grain weight/plot, and productivity. There was a significant linear regression equation, i.e., productivity = 0.0054–0.0003 panicle height + 0.4163 grains weight/plot. Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow, except for the Ketan Merah variety. The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.