Open Access
ARTICLE
Evaluating the Effects of Sustainable Chemical and Organic Fertilizers with Water Saving Practice on Corn Production and Soil Characteristics
1 Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
2 Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
3 University of Layyah, Layyah, 31200, Pakistan
4 Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
* Corresponding Author: Hongbin Liu. Email:
# The authors have contributed equally, should be considered as 1st authors
(This article belongs to the Special Issue: Physiological and Molecular Interventions in Improving Abiotic Stress Tolerance in Plants)
Phyton-International Journal of Experimental Botany 2023, 92(5), 1349-1360. https://doi.org/10.32604/phyton.2023.026952
Received 05 October 2022; Accepted 18 November 2022; Issue published 09 March 2023
Abstract
The rapidly growing world population, water shortage, and food security are promising problems for sustainable agriculture. Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution. This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status. A series of field experiments were conducted for six years with treatments as: farmer accustomed to fertilization used as control (CON), fertilizer decrement (KF), fertilizer decrement + water-saving irrigation (BMP1); combined application of organic and inorganic fertilizer + water-saving irrigation (BMP2), and combined application of controlled-release fertilizer (BMP3). A significant improvement was observed in soil organic matter (14.9%), nitrate nitrogen (106.7%), total phosphorus (23.9%), available phosphorus (26.2%), straw yield (44.8%), and grain yield (54.7%) with BMP2 treatment as compared to CON. The study concludes that integrating chemical and organic fertilizers with water-saving irrigation (BMP2) is a good approach to increasing corn productivity, ensuring water safety and improving soil health. The limitations of the current study include the identification of fertilizer type and its optimum dose, irrigation water type, and geographical position.
Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.