@Article{phyton.2020.10022, AUTHOR = {Lantian Zhang, Siyi Wang, Yuyu Chen, Mengyuan Dong, Yunxia Fang, Xian Zhang, Tao Tong, Ziling Zhang, Junjun Zheng, Dawei Xue, Xiaoqin Zhang}, TITLE = {Genome-Wide Identification of the F-box Gene Family and Expression Analysis under Drought and Salt Stress in Barley}, JOURNAL = {Phyton-International Journal of Experimental Botany}, VOLUME = {89}, YEAR = {2020}, NUMBER = {2}, PAGES = {229--251}, URL = {http://www.techscience.com/phyton/v89n2/38670}, ISSN = {1851-5657}, ABSTRACT = {The F-box protein-encoding gene family plays an essential role in plant stress resistance. In present study, 126 non-redundant F-box genes were identified in barley (Hordeum vulgare L., Hv). The corresponding proteins contained 165– 887 amino acid residues and all were amphiphilic, except 5 proteins. Phylogenetic analysis of F-box protein sequences in barley and stress-related F-box protein sequences in wheat and Arabidopsis thaliana (At) was used to classify barley F-box genes are divided into 9 subfamilies (A–I). A structure-based sequence alignment demonstrated that F-box proteins were highly conserved with a total of 10 conserved motifs. In total, 124 F-box genes were unevenly distributed on 7 chromosomes; another 2 genes have not been anchored yet. The gene structure analysis revealed high variability in the number of exons and introns in F-box genes. Comprehensive analysis of expression profiles and phylogenetic tree analysis, a total of 12 F-box genes that may be related to stress tolerance in barley were screened. Of the 12 detected F-box genes, 8 and 10 were upregulated after drought and salt stress treatments, respectively, using quantitative real-time polymerase chain reaction (qRT-PCR). This study is the first systematic analysis conducted on the F-box gene family in barley, which is of great importance for clarifying this family’s bioinformatic characteristics and elucidating its function in barley stress resistance. These results will serve as a theoretical reference for subsequent research on molecular regulation mechanisms, genetic breeding, and improvement.}, DOI = {10.32604/phyton.2020.10022} }