Special Issue "Plant Physiology for Crop Production and Sustainable Agriculture"

Submission Deadline: 10 June 2021 (closed)
Guest Editors
Prof. Mirza Hasanuzzaman, Sher-e-Bangla Agricultural University, Bangladesh
Prof. Masayuki Fujita, Kagawa University, Japan


Ensuring food security for the increasing population is one of the challenges for next decades. As frontiers of crop production, plant physiologists are the most responsible for the improvement of crop production steadily. However, there are several challenges which hindering crop production which includes various abiotic and biotic stresses as loss of soil productivity and natural biodiversity. With the present global climatic change, these abiotic stress factors are taking place more frequently than earlier times leading to the vulnerability of crop productivity, and creating challenges for the farming community to feed the ever-growing population of this universe. Exploring the physiological bases of plant stress tolerance is very important in developing plant stress tolerance. To address this issue researchers are working in understanding the physiological and molecular mechanisms of abiotic stress responses and tolerance. A remarkable progress has also been made in developing crop varieties tolerant to environmental stress. This special issue is indented to bring together a galaxy of eminent experienced scientists to present latest developments in this field.


Potential topics may include, but are not limited to:

· Plant growth regulation

· Plant water relations

· Solute transport in plants

· Ion homeostasis

· Water and nutrient use efficiencies in plants

· Photosynthesis research

· Plant physiological responses to abiotic and biotic stress

· Molecular plant physiology

· Use of exogenous protectants in improving plant physiology

Plant physiology; Crop production; Climate change; Abiotic stress; Agronomy; Plant genetics and breeding; Biotechnology in agriculture

Published Papers

  • Construction and Functional Analysis of CRISPR/Cas9 Vector of FAD2 Gene Family in Soybean
  • Abstract Soybean oleic acid content is one of the important indexes to evaluate the quality of soybean oil. In the synthesis pathway of soybean fatty acids, the FAD2 gene family is the key gene that regulates the production of linoleic acid from soybean oleic acid. In this study, CRISPR/Cas9 gene editing technology was used to regulate FAD2 gene expression. Firstly, the CRISPR/Cas9 single knockout vectors GmFAD2-1B and GmFAD2-2C and double knockout vectors GmFAD2-2A-3 were constructed. Then, the three vectors were transferred into the recipient soybean variety Jinong 38 by Agrobacterium-mediated cotyledon node transformation, and the mutant plants were obtained. Functional analysis… More
  •   Views:853       Downloads:720       Cited by:1        Download PDF

  • Optimization of Agrobacterium tumefaciens-Mediated Genetic Transformation of Maize
  • Abstract Immature embryos of inbred maize (Zea mays) lines (H8183, H8184, and H8185) were used for Agrobacterium infection. We used the β-glucuronidase gene (GUS) as the target gene and the glufosinate resistance gene (bar) as the selection marker. We conducted research on several aspects, such as different genotypes, coculture conditions, screening agent concentrations, and concentrations of indole-3-butytric acid (IBA), 6-benzylaminopurine (6-BA), and ascorbic acid (Vc) in the differentiation medium. We optimized the genetic transformation system, and the obtained results indicated that among the three lines studied, the induction rate of H8185 was the highest at 93.2%, followed by H8184, with H8183… More
  •   Views:731       Downloads:558        Download PDF

  • Transcriptomic Analysis of the Tolerance Response to Dehydration and Rehydration in Wheat Seedlings
  • Abstract Drought is the main abiotic stress that restricts wheat production. The rapid development of sequencing technology and its widespread application to various fields have revealed the structural characteristics and regulation of related genes through gene expression analysis. Here, we studied responses of wheat plants under drought and re-watering conditions, using morphological and physiological indicators. Moreover, a transcriptome analysis was conducted on Jingmai 12, a drought-resistant wheat strain, to explore the mechanism underlying the response of drought-resistant wheat seedlings to drought stress at the transcriptome level. Drought stress caused morphological and physiological changes in both drought-resistant and -sensitive varieties, but to… More
  •   Views:868       Downloads:577        Download PDF

  • In Vitro-Propagation of Agave tequilana Weber cv. azul in a Temporary Immersion System
  • Abstract In Mexico, there is a need to produce large quantities of plantlets for the establishment and replanting of blue (cv. azul) agave production areas. Most of these plots are within the origin denomination area (DOT, Spanish acronym) of the distilled product of this plant, known as tequila. The objective of this study was to develop an in vitro-propagation protocol for Agave tequilana Weber cv. azul using segmented stems in both: solid and liquid media. A disinfection and in vitro technique were developed to obtain shoots, through plantlets collected in commercial plots, which attained 100% surface-disinfection and budding rate. At the… More
  •   Views:1092       Downloads:1019        Download PDF

  • General and Exact Inbreeding Coefficient of Maize Synthetics Derived from Three-Way Line Hybrids
  • Abstract Synthetic varieties (SVs) are populations generated by randomly mating their parents. They are a good alternative for low-input farmers who grow onions, maize, and other allogamous crops since the seed produced by a SV does not change from one generation to the next. Although SV progenitors are commonly pure lines, in this case a synthetic (SynTC) whose parents are t three-way line crosses, a very common type of maize hybrid grown in Mexico, is studied. The aim was to develop a general and exact equation for the inbreeding coefficient of a SynTC SynTC because of its relationship with… More
  •   Views:863       Downloads:645        Download PDF

  • Identification of Polymorphic Markers by High-Resolution Melting (HRM) Assay for High-Throughput SNP Genotyping in Maize
  • Abstract The development of next generation sequencing (NGS) and high throughput genotyping are important techniques for the QTL mapping and genetic analysis of different crops. High-resolution melting (HRM) is an emerging technology used for detecting single-nucleotide polymorphisms (SNPs) in various species. However, its use is still limited in maize. The HRM analysis was integrated with SNPs to identify three types of populations (NIL population, RIL population and natural population), and the useful tags were screened. The patterns of temperature-shifted melting curves were investigated from the HRM analysis, and compared these with the kit. Among all 48 pairs of primers, 10 pairs… More
  •   Views:800       Downloads:701        Download PDF

  • Knowledge Mapping of Opuntia Milpa Alta Since 1998: A Scientometric Analysis
  • Abstract Opuntia Milpa Alta is a cactus cultivated, domesticated, hybridized and selected from the plant Opuntia ficus-indica by Mexican agricultural experts, which can be used as fruit and vegetable. Opuntia Milpa Alta leaves and fruit are superior to wild varieties and suitable for storage and transportation. In 1998, Opuntia Milpa Alta was introduced to China from Mexico by the Quality Product Development Center of the Ministry of Agriculture of China. Up to now, the Opuntia Milpa Alta has been cultivated on a certain scale in China. This study aims to identify the research progress and development trends of Opuntia Milpa Alta… More
  •   Views:1170       Downloads:767       Cited by:1        Download PDF

  • Epi-Brassinolide Positively Affects Chlorophyll Content and Dark-Reaction Enzymes of Maize Seedlings
  • Abstract Brassinosteroids participate in many physiological processes in plants; however, their regulatory roles on the activities of the enzymes involved in dark phase of photosynthesis remains elusive. In this study, detached leaves and protoplasts of maize seedlings were treated with epi-brassinolide (EBR) and brassinazole followed by the determination of the contents of chlorophyll (a+b) and soluble sugars, and the activity of dark reaction enzymes and the expression of the relevant genes. The results showed that chlorophyll (a+b) content increased by 7.4% under 0.1 μM EBR treatment for 48 h; furthermore, chlorophyll (a+b) content increased by 34% in detached leaves that were… More
  •   Views:962       Downloads:796        Download PDF

  • Quantitative Proteomics Analysis Identifies the Potential Mechanism Underlying Yellow-Green Leave Mutant in Wheat
  • Abstract Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding. However, the molecular basis underlying high photosynthesis efficiency is not well understood up to now. In this study, we investigated the protein expression profile of wheat Jimai5265yg mutant, which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency. Though TMT-labeling quantitative proteomics analysis, a total of 72 differential expressed proteins (DEPs) were obtained between the mutant and wild type (WT). GO analysis found that they significantly enriched in thylakoid membrane, pigment binding, magnesium chelatase activity and response to light intensity. KEGG analysis… More
  •   Views:1104       Downloads:790        Download PDF

  • Analysis of Growth and Productivity of Green Chickpea Using Nitrogen and Phosphorus Fertilization
  • Abstract Chickpea contains high levels of protein, vitamins and minerals. Acceptable chickpea yield is the result of meeting nitrogen and phosphorus requirements. The effect of appropriately meeting such requirements reflects on growth and can easily be evaluated using growth analysis. This research determined: (a) The effect of nitrogen and phosphorus fertilization on phenology, net assimilation rate, number of green leaves, leaf area, leaf area index and leaf area duration; (b) Green chickpea yield and number of pods due to fertilization; and (c) The combination of nitrogen and phosphorus fertilization that yields the most net revenue. Nitrogen and phosphorus fertilization was evaluated;… More
  •   Views:1218       Downloads:907        Download PDF

  • Suppression Effects on Pineapple Soil-Borne Pathogens by Crotalaria juncea, Dolomitic Lime and Plastic Mulch Cover on MD-2 Hybrid Cultivar
  • Abstract The development and implementation of sustainable and environmentally friendly agricultural practices are indispensable as alternatives to pesticide use and to keep populations of soil-borne plant pathogens at levels that do not affect crop productivity. The present research evaluates the incidence of soil-borne phytopathogens on the pineapple variety MD-2, which was subjected to different treatments: Incorporation of Crotalaria juncea into the soil (organic amendment), application of dolomitic lime to soil (inorganic amendment), and the use of plastic mulch covering the soil. During the crop cycle (15 months), the following variables were evaluated: plant height (cm), fruit weight (kg·plant−1 ), crop yield… More
  •   Views:1189       Downloads:774        Download PDF

  • Correlation Analysis of New Soybean [Glycine max (L.) Merr] Gene Gm15G117700 with Oleic Acid
  • Abstract The fatty acid dehydrogenase gene plays an important role in regulating the oleic acid content in soybean. Genome-wide association study screened out soybean oleic acid related gene Gm15G117700. A fragment size of 693bp was obtained by PCR amplification of the gene and, it was connected by seamless cloning technology to the pMD18T cloning vector. Based on the gene sequence cloned, bioinformatic analysis of gene protein was performed. The overexpression vector of Gm15G117700 and the CRISPR/Cas9 gene editing vector were constructed. The positive plants were obtained by Agrobacterium-mediated transformation of soybean cotyledon nodes and T2 plants were identified by conventional PCR,… More
  •   Views:1070       Downloads:702        Download PDF

  • Genome-Wide GRAS Gene Family Analysis Reveals the Classification, Expression Profiles in Melon (Cucumis melo L.)
  • Abstract Melon (Cucumis melo), belonging to the Cucurbitaceae family, is a globally important economic crop. GRAS (GAI, RGA, SCR) genes, which are a type of transcription factor, play a critical role in plant growth and development, including processes such as radial root patterning, light signalling, abiotic/biotic stress, axillary shoot meristem formation, and phytohormone (gibberellin) signal transduction. In this study, the GRAS family in melon was analysed comprehensively with respect to chromosomal location, motif prediction, gene structure, and expression pattern. A total of 37 GRAS genes were first identified in melon, after which a phylogenetic tree was built with the GRAS genes… More
  •   Views:908       Downloads:698        Download PDF

  • Character Identification of an Early Flowering Mutant
  • Abstract The concept of gene-function-genetic trait was introduced to explore the effects of early flowering on the growth and development of maize at the jointing stage and to obtain early flowering mutants using ethyl methanesulfonate mutagenesis. First, we studied gene expression, phytohormones, and lignin content to explore the physiological peculiarities of the early flowering mutant. Then we analyzed the genetic features of the mutants during the jointing stage by measuring physiological and biochemical indices of drought tolerance. The results showed that the photosynthetic rate of the mutant was significantly higher than that of the control and the rate of accumulation of… More
  •   Views:1013       Downloads:788        Download PDF