Special Issues

Abiotic Stress Impacts on Plant Physiology and Their Alleviation

Submission Deadline: 30 June 2024 (closed) View: 236

Guest Editors

Dr. Esmat Farouk Ali Ahmed, Faculty of Agriculture, Assiut University, EGYPT
Email: esmatfarouk@yahoo.com

Summary

Plants are exposed under natural conditions multiple environmental stresses. Abiotic stress includes salinity, drought, floods (submergence stress), temperature extremes, heavy metals, etc. The plants have no choice to escape from these environmental hazards due to they are sessile in nature. These abiotic stresses negatively impact on the growth and productivity. It is also known that plant responses depend largely on the affected tissues or organs. Lately, plants have developed the numerous approaches and mechanisms have been used to overcome these stresses.


There are different methods in which various materials, including mineral, biological, and organic, are used, can overcome the negative effects of abiotic stresses, or at least mitigate those effects. These are affordable and can be used practically. On the other hand, Therefore, it is important to evaluate and explore how various molecular techniques can be applied to biological studies to improve plant tolerance to abiotic stress. From this standpoint, there is an urgent need to shed light on plant stress research, especially with the use of modern methods and materials to overcome the negative effects of these stresses, in order to understand the nature of the multiple responses to stress and to find ways to develop plants that resist multiple stresses while encouraging the highest productivity. This special issue is concerned with the influences of abiotic stress on plants, focusing on work on physiological and molecular mechanisms or any anatomical or morphological adaptations.


The guest-editor encourages scientists to contribute original papers or reviews relevant to the effects of any abiotic environmental stresses on plants and this would be most welcomed.


Keywords

drought, salinity, ROS, waterlogging, oxidative stress, plant abiotic stress tolerance, gene regulation, adaptations, Nanoparticles as a new type of plant stressor, miRNAs involved in abiotic stress in plants

Published Papers


  • Open Access

    ARTICLE

    Salicylic Acid Improved the Growth of Soybean Seedlings by Regulating Water Status and Plant Pigments and Limiting Oxidative Injury under Salinity Stress

    Shahin Imran, Md. Asif Mahamud, Newton Chandra Paul, Prosenjit Sarker, Md. Tahjib-Ul-Arif, Nazmul Islam, Mohammad Saidur Rhaman, Saleh H. Salmen, Sulaiman Ali Alharbi, Mohammad Javed Ansari, Mohammed Ali Alshehri, Akbar Hossain
    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2251-2266, 2024, DOI:10.32604/phyton.2024.055736
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Soybean (Glycine max) is a potential legume crop, but it cannot thrive in mild salinity. Salicylic acid (SA) is a renowned plant growth hormone that improves tolerance to saline conditions. Hence, the study was performed to understand the functions of priming seeds and supplementation of SA in modulating salt tolerance in soybean seedlings. When exposed to salt stress, soybean seedlings showed considerably higher contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) while having decreased germination and growth factors, water contents, and photosynthetic pigments. The germination rate, final germination percentage, germination index, germination energy, and seed vigor index… More >

  • Open Access

    ARTICLE

    Drought Stress Alleviation in Chenopodium quinoa through Synergistic Effect of Silicon and Molybdenum via Triggering of SNF1-Associated Protein Kinase 2 Signaling Mechanism

    Asmat Askar, Humaira Gul, Mamoona Rauf, Muhammad Arif, Bokyung Lee, Sajid Ali, Abdulwahed Fahad Alrefaei, Mikhlid H. Almutairi, Zahid Ali Butt, Ho-Youn Kim, Muhammad Hamayun
    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2455-2478, 2024, DOI:10.32604/phyton.2024.054508
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Drought stress negatively impacts agricultural crop yields. By using mineral fertilizers and chemical regulators to encourage plant development and growth, its impact can be mitigated. The current study revealed that exogenous silicon (Si) (potassium silicate; K2Si2O5 at 1000 ppm) and molybdenum (Mo) (ammonium molybdate; (NH4)6Mo7O24•4H2O at 100 ppm) improved drought tolerance in quinoa (Chenopodium quinoa Willd). The research was conducted in a randomized complete block design with three biological replicates. The treatments comprised T0 (control, water spray), T4 (drought stress), and T1, T2, T3, T5, T6, and T7, i.e., foliar applications of silicon and molybdenum solutions individually… More >

  • Open Access

    REVIEW

    Plant Extracts as Biostimulant Agents: A Promising Strategy for Managing Environmental Stress in Sustainable Agriculture

    Mingzhao Han, Susilawati Kasim, Zhongming Yang, Xi Deng, Noor Baity Saidi, Md Kamal Uddin, Effyanti Mohd Shuib
    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2149-2166, 2024, DOI:10.32604/phyton.2024.054009
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract It is imperative to enhance crop yield to meet the demands of a burgeoning global population while simultaneously safeguarding the environment from adverse impacts, which is one of the dominant challenges confronting humanity in this phase of global climate change. To overcome this problem and reduce dependency on chemical fertilizer, scientists now view the implementation of biostimulant strategies as a cost-effective and environmentally friendly approach to achieving sustainable agriculture. Plant extracts are rich in bioactive phytocompounds, which can enhance plant resistance to disease, pest, and abiotic stresses (e.g., drought, salinity, and extreme temperature), and promote… More >

  • Open Access

    ARTICLE

    EuSHT Acts as a Hub Gene Involved in the Biosynthesis of 6-Hydroxyluteolin and Quercetin Induced by Salt Stress in Eucommia ulmoides

    Fuxin Li, Enyan Chen, Xinxin Chen, Jingyu Jia, Hemin Wang, Jie Zhang, Jianrui Sun, Xin Li
    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 2095-2113, 2024, DOI:10.32604/phyton.2024.054231
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites. Flavonoids are natural compounds that possess many important biological activities, playing a significant role in the medicinal activity of Eucommia ulmoides (E. ulmoides). To investigate the mechanism by which salt stress affects the biosynthesis of flavonoids in E. ulmoides, a comprehensive analysis of metabolomics and transcriptomics was conducted. The results indicated that salt stress led to the wilting and darkening of E. ulmoides leaves, accompanied by a decrease in chlorophyll levels, and significantly induced malondialdehyde (MDA) and relative electrical conductivity. During salt stress, most metabolites in… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses

    Xianwen Ji, Ziying Jiang, Jichao Wang, Lili Dong, Xinyi Deng
    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1839-1850, 2024, DOI:10.32604/phyton.2024.052809
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Genes in the glycogen synthase kinase 3 (GSK3) family are essential in regulating plant response to stressful conditions. This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database. The expressions of GSK3 genes in different tissues and stress treatments, such as salt, drought, and cold, were assessed using transcriptome sequencing and quantitative real-time PCR (qRT-PCR). The study results revealed that the 12 GSK3 genes of sunflower, belonging to four classes (Classes I–IV), contained the GSK3 kinase domain and 11–13 exons. The majority of GSK3 genes were highly expressed in the leaf axil and… More >

  • Open Access

    ARTICLE

    Seed Priming with Potassium Nitrate Can Enhance Salt Stress Tolerance in Maize

    Bushra Rehman, Asma Zulfiqar, Houneida Attia, Rehana Sardar, Muneera A. Saleh, Khalid H. Alamer, Ibtisam M. Alsudays, Faisal Mehmood, Qamar uz Zaman
    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1819-1838, 2024, DOI:10.32604/phyton.2024.048780
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Salinity is a major abiotic stress that hinders plant development and productivity and influences agricultural yield. Seed priming is a technique used to boost germination and seedling growth under abiotic stress. A pot experiment was conducted to evaluate the impact of seed priming with potassium nitrate (KNO3) at various levels (0%, 0.50%, 1.00% and 1.50%) under salt stress (0, 75, 100 mM NaCl) on two maize verities (MNH360 and 30T60) for the growth, development and metabolic attributes results revealed that in maize variety MNH360, KNO3 priming’s significantly enhanced growth parameters than in maize variety 30T60 under… More >

  • Open Access

    ARTICLE

    Combined Application of Biostimulants and EDTA Improved Wheat Productivity under Cadmium Stress

    Abida Aziz, Shafiqa Bano, Mubshar Hussain, Muhammad Farooq Azhar, Ghulam Yasin, Naila Hadayat, Iqra Arooj, Abeer Hashem, Ajay Kumar, Elsayed Fathi Abd_Allah, Qamar uz Zaman
    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1647-1665, 2024, DOI:10.32604/phyton.2024.050974
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Wheat (Triticum aestivum L.) exhibits a greater capacity for cadmium (Cd) absorption compared to other cereal crops, leading to elevated daily Cd intake, and posing a significant threat to public health. For the mitigation of Cd stress in sustainable and environmentally friendly way, a pot study was designed by using exogenous application of various biostimulants, i.e., Nigella sativa and Ocimum sanctum extracts: 0%, 10%, and 20% in combination with the chelating agent ethylenediaminetetraacetic acid (EDTA) using 0 and 5 mg kg under various levels of Cd stress (i.e., 0, 5, 10, and 15 mg kg soil). Results revealed… More >

    Graphic Abstract

    Combined Application of Biostimulants and EDTA Improved Wheat Productivity under Cadmium Stress

  • Open Access

    ARTICLE

    Physiological and Biochemical Responses of Perennial Ryegrass Mixed Planting with Legumes under Heavy Metal Pollution

    Yi Xi, Li Zhang, Yanhong Xu, Wei Cheng, Chao Chen
    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1749-1765, 2024, DOI:10.32604/phyton.2024.051793
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract In artificially controlled pot experiments, perennial ryegrass was mixed with other leguminous plants (white clover and alfalfa) and treated with lead, zinc and cadmium (337 mg·kg, 648 mg·kg, and 9 mg·kg, respectively) to simulate compound pollution conditions. The results showed that the concentrations of heavy metals, transport factors, and bioconcentration factors in mixed planting of ryegrass decreased compared with those in monoculture. Regardless of whether heavy metal pollution was introduced, mixed planting increased the aboveground and underground biomasses of ryegrass. The different mixed planting treatments had no significant impact on the chlorophyll concentration of ryegrass.… More >

  • Open Access

    ARTICLE

    Physiological Response Mechanism and Drought Resistance Evaluation of Passiflora edulis Sims under Drought Stress

    Binyang Zhao, Fengchan Wu, Guojun Cai, Peiyu Xi, Yulin Guo, Anding Li
    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1345-1363, 2024, DOI:10.32604/phyton.2024.050950
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract In order to explore the response mechanism of Passiflora edulis Sims to drought stress, the changes in morphological and physiological traits of Passiflora edulis Sims under different drought conditions were studied. A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels: 75%–80% (Control, CK) of maximum field water capacity, 55%–60% (Light Drought, LD) of maximum field water capacity, i.e., mild drought, 40%–45% (Moderate Drought, MD) of maximum field water capacity, i.e., moderate drought and 30%–35% (Severe Drought, SD) of maximum field water… More >

  • Open Access

    REVIEW

    Research Progress on Plant Anti-Freeze Proteins

    Zhengyang Zhang, Weixue Liu, Yinran Huang, Ping Li
    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1263-1274, 2024, DOI:10.32604/phyton.2024.050755
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Plant antifreeze proteins (AFPs) are special proteins that can protect plant cells from ice crystal damage in low-temperature environments, and they play a crucial role in the process of plants adapting to cold environments. Proteins with these characteristics have been found in fish living in cold regions, as well as many plants and insects. Although research on plant AFPs started relatively late, their application prospects are broad, leading to the attention of many researchers to the isolation, cloning, and genetic improvement of plant AFP genes. Studies have found that the distribution of AFPs in different species… More >

  • Open Access

    ARTICLE

    Physiological Mechanism of Exogenous Selenium in Alleviating Mercury Stress on Pakchoi (Brassica campestris L.)

    Chengxu Qian, Qiangwen Chen, Leiyu Jiang, Xiaoyan Yang, Shen Rao, Weiwei Zhang, Feng Xu
    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 951-962, 2024, DOI:10.32604/phyton.2024.050893
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract The objective of this study was to explain the physiological mechanisms through which NaSeO mitigates the growth and developmental inhibition of pakchoi under HgCl stress. The results showed that treatment with HgCl (40 mg L) led to reduced biomass, dwarfing, root shortening, and root tip necrosis in pakchoi. Compared to control (CK), the activities of superoxide dismutase (SOD) and peroxidase (POD) in Hg treatment increased, and the content of malondialdehyde (MDA) also dramatically increased, which negatively impacted the growth of pakchoi. Low concentrations of NaSeO (0.2 mg L) significantly increased the content of soluble sugars… More >

  • Open Access

    ARTICLE

    Effects of Different Light Qualities on the Growth Characteristics of Populus trinervis

    Jiaqi Li, Zhensheng Qiao, Dan Zong, Chengzhong He
    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 1043-1056, 2024, DOI:10.32604/phyton.2024.050637
    (This article belongs to the Special Issue: Abiotic Stress Impacts on Plant Physiology and Their Alleviation)
    Abstract Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests. P. trinervis mainly grows in high-altitude areas. At present, there are limited studies on the response of P. trinervis to different light qualities, so it is necessary to investigate the photosynthetic physiological changes of P. trinervis in different light environments. In our study, P. trinervis was grown for 8 months under light filtered by three different colored films. The three treatments were blue film, green film, and white plastic film. The effects of blue (B), green (G), and white… More >

Share Link