Open Access iconOpen Access

ARTICLE

crossmark

Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway

MINJI PARK1, CHULHWAN BANG2, WON-SOO YUN3, YUN-MI JEONG3,*

1 T&R Biofab Co., Ltd., Seongnam-si, 13487, Korea
2 Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 02706, Korea
3 Department of Mechanical Engineering, Tech University of Korea, Si-heung City, 15073, Korea

* Corresponding Author: YUN-MI JEONG. Email: email

(This article belongs to the Special Issue: Signaling Pathway Crosstalk in Malignant Tumors: Molecular Targets and Combinatorial Therapeutics)

Oncology Research 2024, 32(2), 273-282. https://doi.org/10.32604/or.2023.044362

Abstract

Fucoidan, a sulfate polysaccharide obtained from brown seaweed, has various bioactive properties, including anti-inflammatory, anti-cancer, anti-viral, anti-oxidant, anti-coagulant, anti-thrombotic, anti-angiogenic, and anti-Helicobacter pylori properties. However, the effects of low-molecular-weight fucoidan (LMW-F) on melanoma cell lines and three dimensional (3D) cell culture models are not well understood. This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma. Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F. MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patient-derived melanoma explants in a 3D-printed collagen scaffold. The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan. Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56, which was associated with the prevention of anti-apoptotic activity of cancer cells. Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.

Keywords

Low-molecular-weight fucoidan; Melanoma; Patient-derived melanoma explants in a 3D-printed collagen scaffold; Anti-melanoma effect; PTEN-AKT-Bcl-2 network

Supplementary Material

Supplementary Material File

Cite This Article

APA Style
PARK, M., BANG, C., YUN, W., JEONG, Y. (2024). Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway. Oncology Research, 32(2), 273–282. https://doi.org/10.32604/or.2023.044362
Vancouver Style
PARK M, BANG C, YUN W, JEONG Y. Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway. Oncol Res. 2024;32(2):273–282. https://doi.org/10.32604/or.2023.044362
IEEE Style
M. PARK, C. BANG, W. YUN, and Y. JEONG, “Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway,” Oncol. Res., vol. 32, no. 2, pp. 273–282, 2024. https://doi.org/10.32604/or.2023.044362



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1346

    View

  • 529

    Download

  • 0

    Like

Share Link