TY - EJOU AU - Shi, Jiajian AU - Chen, Yuchen AU - Peng, Chentai AU - Kuang, Linwu AU - Zhang, Zitong AU - Li, Yangkai AU - Huang, Kun TI - Advances in Targeted Therapy Against Driver Mutations and Epigenetic Alterations in Non-Small Cell Lung Cancer T2 - Oncologie PY - 2022 VL - 24 IS - 4 SN - 1765-2839 AB - The incidence and mortality of lung cancer rank top three of all cancers worldwide. Accounting for 85% of the total number of lung cancer, non-small cell lung cancer (NSCLC) is an important factor endangering human health. Recently, targeted therapies against driver mutations and epigenetic alterations have made encouraging advances that benefit NSCLC patients. Druggable driver mutations, which mainly occur in EGFR, KRAS, MET, HER2, ALK, ROS1, RET and BRAF, have been identified in more than a quarter of NSCLC patients. A series of highly selective mutant targeting inhibitors, such as EGFR tyrosine kinase inhibitors and KRAS inhibitors, have been well studied and applied in clinical treatments, which greatly promote the overall survival of NSCLC patients. However, drug resistance has become a major challenge for targeted treatment, and a variety of methods to overcome drug resistance are constantly being developed, including inhibitors against new mutants, combination therapy with other pathway inhibitors, etc. In addition, epigenetics-based therapy is emerging. Epigenetic regulators such as histone deacetylases and non-coding RNA play a crucial role in the development of cancer and drug resistance by affecting multiple signaling pathways. Epigenetics-based therapeutic strategies combined with targeted drugs show great clinical potential. Many agents targeting epigenetic changes are being investigated in preclinical studies, with some already under clinical trials. This article focuses on driver mutations and epigenetic alterations in association with relevant epidemiological data. We introduce the current status of targeted inhibitors and known drug resistance, review advances in major targeted therapies with recent data from preclinical and clinical trials, and discuss the possibility of combination therapy against driver mutations and epigenetic alterations in overcoming drug resistance. KW - NSCLC; targeted therapy; driver mutation; epigenetics; resistance DO - 10.32604/oncologie.2022.027545