Open Access
ARTICLE
Strain-induced Orientation Response of Endothelial Cells: Effect of Substratum Adhesiveness and Actin-myosin Contractile Level
Molecular & Cellular Biomechanics 2008, 5(1), 69-82. https://doi.org/10.3970/mcb.2008.005.069
Abstract
Endothelial cells subjected to cyclic stretching change orientation so as to be aligned perpendicular to the direction of applied strain in a magnitude and time-dependent manner. Although this type of response is not the same as motility, it could be governed by motility-related factors such as substratum adhesiveness and actin-myosin contractile level. To examine this possibility, human aortic endothelial cells (HAEC) were uniaxially, cyclically stretched on silicone rubber membranes coated with various concentrations of fibronectin, collagen type IV and laminin to produce differing amounts of adhesiveness (measured using a radial flow detachment assay). Cells were subjected to 10% pure cyclic uniaxial stretching for three hours at a rate of 10%/sec. Time-lapse images revealed that cells underwent large morphological changes without moving. For each type of protein there was a parabolic dependence on initial adhesiveness with optimal cell orientation occurring at very similar adhesive strengths. The effect of actin-myosin contractile level was examined by stretching cells treated with different doses of 2,3-butanedione monoxime (BDM) and Blebbistatin. Each drug induced a dose-dependent decrease in orientation angles after three hours of cyclic stretching. Furthermore, cell and stress fiber orientations were tightly coupled for untreated and Blebbistatin-treated cells but were uncoupled for BDM-treated cells. Even though orientation response to cyclic stretching is not a spontaneous motile response, it is determined, in large part, by the same factors that affect spontaneous motility -- the cell-substratum adhesiveness and actin-myosin contractile level.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.