Home / Journals / MCB / Vol.4, No.4, 2007
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Focal Adhesion Kinase Signaling Controls Cyclic Tensile Strain Enhanced Collagen I-Induced Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Donald F. Ward Jr.*, William A. Williams*, Nicole E. Schapiro*, Samuel R. Christy*, Genevieve L. Weber*, Megan Salt, Robert F. Klees*, Adele Boskey, George E. Plopper ∗,‡
    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 177-188, 2007, DOI:10.3970/mcb.2007.004.177
    Abstract Focal adhesion kinase (FAK) is a key integrator of integrin-mediated signals from the extracellular matrix to the cytoskeleton and downstream signaling molecules. FAK is activated by phosphorylation at specific tyrosine residues, which then stimulate downstream signaling including the ERK1/2 pathway, leading to a variety of cellular responses. In this study, we examined the effects of FAK point mutations at tyrosine residues (Y397, Y925, Y861, and Y576/7) on osteogenic differentiation of human mesenchymal stem cells exposed to collagen I and cyclic tensile strain. Our results demonstrate that FAK signaling emanating from Y397, Y925, and to a lesser extent Y576/7, but not… More >

  • Open AccessOpen Access

    ARTICLE

    Topological Remodeling of Cultured Endothelial Cells by Characterized Cyclic Strains

    Nooshin Haghighipour, Mohammad Tafazzoli-Shadpour, Mohammad Ali Shokrgozar, Samira Amini, Amir Amanzadeh, Mohammad Taghi Khorasani
    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 189-200, 2007, DOI:10.3970/mcb.2007.004.189
    Abstract Evaluation of mechanical environment on cellular function is a major field of study in cellular engineering. Endothelial cells lining the entire vascular lumen are subjected to pulsatile blood pressure and flow. Mechanical stresses caused by such forces determine function of arteries and their remodeling. Critical values of mechanical stresses contribute to endothelial damage, plaque formation and atherosclerosis. A device to impose cyclic strain on cultured cells inside an incubator was designed and manufactured operating with different load amplitudes, frequencies, numbers of cycles and ratios of extension to relaxation. Endothelial cells cultured on collagen coated silicon scaffolds were subjected to cyclic… More >

  • Open AccessOpen Access

    ARTICLE

    Regulation of Cyclic Longitudinal Mechanical Stretch on Proliferation of Human Bone Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Yang Ju∗,†,§, Hitoshi Soyama*, Toshiro Ohashi, Masaaki Sato
    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 201-210, 2007, DOI:10.3970/mcb.2007.004.201
    Abstract Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs. We applied 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrasodium… More >

  • Open AccessOpen Access

    ARTICLE

    In Vitro Measurement and Calculation of Drag Force on Iliac Limb Stentgraft in a Compliant Arterial Wall Model

    A. Sinha Roy*, K. West, R. S. Rontala1, R. K. Greenberg2, R. K. Banerje1,‡
    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 211-226, 2007, DOI:10.3970/mcb.2007.004.211
    Abstract Interventional treatment of aortic aneurysms using endovascular stentgrafting is a minimally invasive technique. Following device implantation, transient drag forces act on the stentgraft. When the drag force exceeds the fixation force, complications like stentgraft migration, endoleaks and stentgraft failure occur. In such a scenario the device becomes unstable, causing concern over the long-term durability of endovascular repairs. The objective of this study is: 1) to measure the drag force on iliac limb stentgraft, having a distal diameter that is half the size of the proximal end, in an in vitro experiment; 2) to calculate the drag force using blood flow--compliant… More >

  • Open AccessOpen Access

    ARTICLE

    Osmoregulatory Function of Large Vacuoles Found in Notochordal Cells of the Intervertebral Disc Running Title: An Osmoregulatory Vacuole

    Christopher J. Hunter∗,†, Sophia Bianchi*, Phil Cheng, Ken Muldrew∗,‡
    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 227-238, 2007, DOI:10.3970/mcb.2007.004.227
    Abstract The nucleus pulposi of many species contain residual cells from the embryonic notochord, which exhibit a very unusual appearance (large vacuoles occupying ~80% of the cell volume, surrounded by an actin cytoskeleton). While the vacuoles have been qualitatively described, their composition and function has remained elusive. Given that these cells are believed to generate and experience significant osmotic pressures in both the notochord and intervertebral disc, we hypothesized that the vacuoles may serve as osmoregulatory organelles. Using both experimental and theoretical means, we demonstrated that the vacuoles contain a low-osmolality solution, generated via ion pumps on the vacuolar membrane. During… More >

Per Page:

Share Link