• Journal Logo

Open Access iconOpen Access

ARTICLE

crossmark

Lower Limb Muscle Forces in Table Tennis Footwork during Topspin Forehand Stroke Based on the OpenSim Musculoskeletal Model: A Pilot Study

Yuqi He1,2,3, Shirui Shao1, Gusztáv Fekete3, Xiaoyi Yang1, Xuanzhen Cen1,4, Yang Song1,4, Dong Sun1,*, Yaodong Gu1,*

1 Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
2 Faculty of Engineering, University of Pannonia, Veszprém, H8201, Hungary
3 Savaria Institute of Technology, EötvösLoránd University, Szombathely, H9700, Hungary
4 Doctoral School on Safety and Security Sciences, Obuda University, Budapest, 1034, Hungary

* Corresponding Authors: Dong Sun. Email: email; Yaodong Gu. Email: email

Molecular & Cellular Biomechanics 2022, 19(4), 221-235. https://doi.org/10.32604/mcb.2022.027285

Abstract

Introduction: Footwork is one of the training contents that table tennis players and coaches focus on. This study aimed to gain a thorough understanding of the muscle activity of the table tennis footwork and creating a musculoskeletal model to investigate the muscle forces, joint kinematic, and joint kinetic characteristics of the footwork during topspin forehand stroke. Methods: Six male table tennis athletes (height: 171.98 ± 4.97 cm; weight: 68.77 ± 7.86 kg; experience: 10.67 ± 1.86 years; age: 22.50 ± 1.64 years) performed chasse step and one-step footwork to return the ball from the coach by topspin forehand stroke. The kinematics, kinetics, and muscle activity of the lower limb were recorded by the motion capture, force platform, and Electromyography (EMG) system. Statistical parametric mapping (SPM) analysis was used to investigate any difference between the chasse step and one-step footwork during the stroke. Results and Conclusion: The muscle force of the biceps femoris long head (p < 0.001), lateral gastrocnemius (p < 0.001), vastus lateralis (p < 0.001), vastus medial (p < 0.001), rectus femoris (p < 0.001), and tibia anterior (p < 0.001) of the chasse step were significantly greater than the one-step footwork during the early stroke phase (stance). At the end of the stroke phase (push-off), the muscle force of the biceps femoris long head (p < 0.001), medial gastrocnemius (p < 0.001), lateral gastrocnemius (p < 0.001), rectus femoris (p < 0.001), and tibias anterior (p < 0.001) in the chasse step footwork was significantly greater than the one-step footwork. The muscle force of the ankle plantar flexor and valgus muscle groups in the one-step was significantly greater than in the chasse step. Besides, the moment and angle of hip flexion (p = 0.001) and axial rotation (p = 0.009) were significantly greater for the chasse step than the one-step footwork, as well as the ankle plantarflexion angle (p < 0.001) and moment (p < 0.001) of the one-step footwork were significantly higher than the chasse step footwork. The results of this study can be applied to movement control and injury prevention in table tennis footwork.

Keywords


Cite This Article

APA Style
He, Y., Shao, S., Fekete, G., Yang, X., Cen, X. et al. (2022). Lower limb muscle forces in table tennis footwork during topspin forehand stroke based on the opensim musculoskeletal model: A pilot study. Molecular & Cellular Biomechanics, 19(4), 221-235. https://doi.org/10.32604/mcb.2022.027285
Vancouver Style
He Y, Shao S, Fekete G, Yang X, Cen X, Song Y, et al. Lower limb muscle forces in table tennis footwork during topspin forehand stroke based on the opensim musculoskeletal model: A pilot study. Mol Cellular Biomechanics . 2022;19(4):221-235 https://doi.org/10.32604/mcb.2022.027285
IEEE Style
Y. He et al., “Lower Limb Muscle Forces in Table Tennis Footwork during Topspin Forehand Stroke Based on the OpenSim Musculoskeletal Model: A Pilot Study,” Mol. Cellular Biomechanics , vol. 19, no. 4, pp. 221-235, 2022. https://doi.org/10.32604/mcb.2022.027285



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1220

    View

  • 598

    Download

  • 0

    Like

Share Link