Open Access
ARTICLE
The Effect of Specialized Digital Training on Double Poling Technique for Para Seated Cross-Country Skiing Athletes
1 Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
2 Centre for Health and Exercise Science Research, Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong, 999077, China
* Corresponding Authors: Dong Sun. Email: ; Yaodong Gu. Email:
Molecular & Cellular Biomechanics 2022, 19(4), 177-189. https://doi.org/10.32604/mcb.2022.021764
Received 03 February 2022; Accepted 16 May 2022; Issue published 27 December 2022
Abstract
Purpose: In order to satisfy the requirements of Chinese Para seated cross-country skiers special training for Double poling scientifically, and the individualized strength training of Paralympic athletes, this study aims to explore the effect of the full-dimensional servo-driven intelligent training system on para cross-country skiers’ strength training. Methods: 12 Para seated cross-country skiing athletes were included (6 males and 6 females: LW10.5-LW12), 4 weeks of training of the Double poling based on the centripetal isotonic mode of the full-dimensional servo-driven intelligent training system, the special strength quality indicators include the speed and power of the Double poling in the centripetal phase. The SPM1d paired-sample t-test was used for statistical analysis of each index before and after training. Results: After 4 weeks of special movement training through the full-dimensional servo-driven intelligent training system, the speed and power of the Double poling of 12 seated cross-country skiers were significantly improved compared to before training. In the Double poling period, the speed index of female athletes increased significantly in the 92%–100% stage, and the male athletes in the 20%–23% and 72%–73% stages. The power index of female athletes increased significantly in the 17%–18%, 21%∼30% and 70%∼82% stages, and the male athletes in the 49%–58% and 91%–100% stages. Conclusion: The full-dimensional servo-driven intelligent training system can significantly improve the special strength quality index of Para seated cross-country skiers’ Double poling techniques and enhance the special ability on snow. In addition, the system can meet the personalized and specialized training needs of disabled athletes to a great extent, monitor and feedback training data in real-time, and further reduce the risk of sports injuries.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.