Open Access
ARTICLE
Tushar Kulkarni1, Dr. Rashmi Uddanwadiker2
Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 87-104, 2016, DOI:10.3970/mcb.2016.013.099
Abstract This paper aims to determine the force required for holding the objects by human hand. A static analysis is performed on mathematical models to obtain holding force considering lower arm as class three lever and by varying the joint angles. Three mathematical models are discussed to quantify the force required to hold any object, for different weight of the object and the joint angles. A noninvasive experimentation using surface electromyogram was performed to determine the forces required by human hand for the same objects used in the mathematical modeling. Twenty-one male subjects participated in this test and were asked to… More >
Open Access
ARTICLE
Mahesh B. Mawale1,*, Abhaykumar Kuthe2, Dr. Padma Pawane3, Sandeep W. Dahake2, Jyotilal S2
Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 105-114, 2016, DOI:10.3970/mcb.2016.013.119
Abstract Purpose: The main purpose of this study is to develop a device for the indicative measurement of intraocular pressure (IOP) of eyeball, a key cause for glaucoma. In early diagnosis and treatment of glaucoma accurate measurement of IOP is important. The methods and devices which are available for the measurement of IOP have their own limitations which cause discomfort to the patients during measurement and needs anesthesia. There is a dare need of a device for the measurement of intraocular pressure by making the contact of plunger with closed eyelid eliminating the need of anesthesia and expert ophthalmologist. Method: Additive… More >
Open Access
ARTICLE
Pranav S. Sapkal1*, Abhaykumar M. Kuthe1, Divya Ganapathy2, Shantanu C. Mathankar3, Sudhanshu Kuthe4
Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 115-136, 2016, DOI:10.3970/mcb.2016.013.131
Abstract Biphasic calcium phosphate scaffolds with 20/80 HA/TCP ratio were fabricated using the 3D-Bioplotting system to heal critical size defects in rabbit tibia bone. Four different architectures were printed in a layer by layer fashion with lay down patterns viz. (a) 0°– 90°, (b) 0°– 45°– 90°– 135°, (c) 0°–108°– 216° and (d) 0°– 60°– 120°. After high-temperature sintering scaffolds were coated with collagen and were further characterized by (FTIR) Fourier Transform Infrared Spectroscopy, (SEM) Scanning Electron Microscopy, (XRD) X-Ray diffraction, Porosity analysis and Mechanical testing. Scaffold samples were tested for its ability to induce cytotoxicity in Balb/c 3T3 cells at… More >
Open Access
ARTICLE
Mingzhi Luo1,2, Peili Yu1, Yang Jin3, Zhili Qian1, Yue Wang1, Jingjing Li1, Peng Shang2*, Linhong Deng1*
Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 137-157, 2016, DOI:10.3970/mcb.2016.013.155
Abstract Random positioning machine (RPM) and diamagnetic levitation are two essential ground-based methods used to stimulate the effect of microgravity in space life science research. However, the force fields generated by these two methods are fundamentally different, as RPM generates a dynamic force field acting on the surface in contact with supporting substrate, whereas diamagnetic levitation generates a static force field acting on the whole body volume of the object (e.g. cell). Surprisingly, it is hardly studied whether these two fundamentally different force fields would cause different responses in mammalian cells. Thus we exposed cultured MC3T3-E1 osteoblasts to either dynamically stimulated… More >