Open Access
ARTICLE
Idalba A. Hidalgo A.∗, Felipe Sojo†, Francisco Arvelo†, Marcos A. Sabino∗,‡
Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 85-105, 2013, DOI:10.3970/mcb.2013.010.085
Abstract The electrospinning technique is a method used to produce nano and microfibers using the influence of electrostatic forces. Porous three dimensional networks of continuous and interconnected fibers as scaffolds were obtained from a poly (lactic acid) solution. The concentration of the polymeric solution, 12.5% m/w, as well as the conditions of voltage (V=11kV) and tip-metallic collector distance (H=13cm) were established to develop these scaffolds through the electrospinning process. The characteristics of the scaffolds, such as fiber diameter, sintering and the biomimetics of the characteristics of a native extra cellular matrix were verified by Scanning Electron Microscopy (SEM). The orientation induced… More >
Open Access
ARTICLE
K. Y. Volokh*
Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 107-135, 2013, DOI:10.3970/mcb.2013.010.107
Abstract The application of mechanics to biology – biomechanics – bears great challenges due to the intricacy of living things. Their dynamism, along with the complexity of their mechanical response (which in itself involves complex chemical, electrical, and thermal phenomena) makes it very difficult to correlate empirical data with theoretical models. This difficulty elevates the importance of useful biomechanical theories compared to other fields of engineering. Despite inherent imperfections of all theories, a well formulated theory is crucial in any field of science because it is the basis for interpreting observations. This is all-the-more vital, for instance, when diagnosing symptoms, or… More >
Open Access
ARTICLE
Marco A.Velasco∗, Diego A. Garzón-Alvarado†
Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 137-157, 2013, DOI:10.3970/mcb.2013.010.137
Abstract The design of porous scaffolds for tissue engineering requires methods to generate geometries in order to control the stiffness and the permeability of the implant among others characteristics. This article studied the potential of the reaction-diffusion systems to design porous scaffolds for bone regeneration. We simulate the degradation of the scaffold material and the formation of new bone tissue over canal-like, spherical and ellipsoid structures obtained by this approach. The simulations show that the degradation and growth rates are affected by the form of porous structures. The results have indicated that the proposed method has potential as a tool to… More >
Open Access
ARTICLE
Yongren Wu∗, Sarah Cisewski∗, Barton L. Sachs†, Hai Yao∗,†,‡
Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 159-182, 2013, DOI:10.3970/mcb.2013.010.159
Abstract This study examines the effects of cartilage endplate (CEP) calcification
and the injection of intervertebral disc (IVD) cells on the nutrition distributions
inside the human IVD under physiological loading conditions using multiphasic
finite element modeling. The human disc was modeled as an inhomogeneous mixture
consisting of a charged elastic solid, water, ions (Na+ and Cl−), and nutrient solute(oxygen,glucose and lactate) phases. The effect of the endplate calcification was simulated by a reduction of the tissue porosity (i.e., water volume faction) from 0.60 to 0.48. The effect of cell injection was simulated by increasing the cell density in the nucleus pulposus… More >