TY - EJOU AU - Guo, Xuying AU - Fu, Saiou AU - Di, Junzhen AU - Dong, Yanrong AU - Jiang, Guoliang TI - Study on the Treatment of Acid Mine Drainage Containing Fe2+ and Mn2+ Using Modified Spontaneous Combustion Gangue T2 - Journal of Renewable Materials PY - 2021 VL - 9 IS - 3 SN - 2164-6341 AB - The high concentrations of Fe2+ and Mn2+ in acid mine drainage make it difficult and expensive to treat. It is urgent that we find a cheap and efficient adsorption material to treat Fe2+ and Mn2+. As a solid waste in mining areas, coal gangue occupies a large area and pollutes the surrounding environment during the stacking process. Developing a method of resource utilization is thus a research hotspot. In this study, we modified spontaneous combustion gangue using NaOH, NaCl, and HCl by chemically modifying the minerals. We determined the optimal conditions for treating Fe2+ and Mn2+ in acid mine drainage with spontaneous combustion gangue and modified coal gangue using the single factor test method. Based on results of the static test, two dynamic test columns, column No. 1 (spontaneous combustion gangue) and column No. 2 (NaOH modified spontaneous combustion gangue), were constructed, and the repair effects of acid mine drainage were compared and analyzed using dynamic experiments. The results show that overall, NaOH modified spontaneous combustion gangue is the most efficient at removing the Fe2+ and Mn2+ in acid mine drainage. The optimal conditions for NaOH modification are an NaOH concentration of 3 mol/L, a liquid to solid ratio of 2 L/kg, and a modification time of 8 h. The overall efficiency of column No. 2 at removing Fe2+ and Mn2+ from acid mine drainage is better than that of column No. 1. Among them, the average removal efficiency of Fe2+ and Mn2+ from acid mine drainage in column No. 2 were 97.73% and 44.82%, respectively. The above results show that NaOH modified spontaneous combustion gangue is a good adsorbent, which has application potential in wastewater remediation, as it can achieve the purpose of “treating dust with waste”. KW - Acid mine drainage; chemical modification; dynamic experiments; single factor test; spontaneous combustion gangue DO - 10.32604/jrm.2021.012335