Open Access
ARTICLE
Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance
1 School of Engineering, and Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, 311300, China.
2 Zhonghang Monitoring Technology Research Institute Co., Ltd., Hangzhou, 310022, China.
3 Zhejiang Runyang New Material Technology Co., Ltd., Huzhou, 313105, China.
* Corresponding Authors: Xiaohuan Liu. Email: ; Shenyuan Fu. Email: ; Yuxun Tang. Email: .
(This article belongs to the Special Issue: Renewable Polymer Materials and Their Application)
Journal of Renewable Materials 2019, 7(12), 1333-1346. https://doi.org/10.32604/jrm.2019.07905
Abstract
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading. Nonphase-separated hybrids with significant toughening effect were obtained. Additionally, the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading. This study provides an eco-friendly, cost-effective, and facile approach for the preparation of high-performance, solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.