Open Access
ARTICLE
Synthesis and Characterization of Interpenetrating Polymer Networks (IPNs) from Acrylated Soybean Oil a-Resorcylic Acid: Part 2. Thermo-Mechanical Properties and Linear Fracture Mechanics
Chemical Engineering Department, Auburn University, Auburn, AL 36849, USA
Center for Polymer and Advanced Composites (CPAC), Auburn University, Auburn, AL 36849, USA
National Laboratory of Nanotechnology (LANOTEC), San José, Costa Rica
Textile Engineering Department, Mansoura University, Egypt
*Corresponding author:
Journal of Renewable Materials 2017, 5(3-4), 241-250. https://doi.org/10.7569/JRM.2017.634114
Abstract
The thermo-mechanical properties and linear fracture mechanics of acrylated soybean oil and the triglycidylated ether of α-resorcylic acid interpenetrated networks as a function of their weight composition are the focus of Part 2 of this article. Thermo-mechanical characterization showed that the obtained materials behave as thermoset amorphous polymers, and that both the modulus and glass transition are extremely dependent on the epoxy/acrylate weight ratio. Modulus values ranged from 0.7 to 3.3 GPa at 30 °C, and glass transition temperatures ranged from around 58 °C to approx. 130 °C. No synergistic effect on these two properties was observed. Interpenetrating networks containing equivalent weight proportions of the parent resins showed the highest fracture toughness of the series, exhibiting a KIc value of around 2.1 MPa·m1/2. The results showed that the KIc values did not increase as Mc increased, which seems to suggest that a different mechanism is responsible for the increase in the fracture toughness displayed by IPNs. Also, there seems to be an exponential-type increase in the fracture energy with the Mc1/2 for the materials containing the epoxy phase.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.