Home / Journals / JRM / Vol.4, No.2, 2016
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Natural Fiber-Polypropylene Composites Made from Caranday Palm

    Estela Krause Sammartino1,2,3†, María Marta Reboredo4, Mirta I. Aranguren*,4
    Journal of Renewable Materials, Vol.4, No.2, pp. 101-112, 2016, DOI:10.7569/JRM.2014.634144
    Abstract Composites made from polypropylene (PP) and local South American fibers traditionally used in yarnderived craftsmanships, Caranday Palm, were studied regarding the effect of fiber addition, concentration and characteristics of the coupling agent (molecular weight and percentage of grafted maleic anhydride), as well as type of processing. A laboratory-scale intensive mixing followed by compression, and pilot plant twin extrusion followed by injection, were the two processes investigated. The use of the first one allowed the selection of processable formulations with high fiber concentration and a percentage of coupling agent below the surface fiber saturation. In fact,… More >

  • Open AccessOpen Access

    ARTICLE

    Effect of Epoxidized Jatropha Oil on the Cure, Thermal, Morphological and Viscoelastic Properties of Epoxy Resins

    A. Sammaiah1, K. V. Padmaja1, K. I. Suresh*,2, R. B. N. Prasad1
    Journal of Renewable Materials, Vol.4, No.2, pp. 113-122, 2016, DOI:10.7569/JRM.2015.634118
    Abstract This article reports the effect of epoxidized jatropha oil (EJO) on the thermal, cure and viscoelastic properties of epoxy resins. Epoxidized jatropha oil with an oxirane value of 5.0 was prepared and epoxy formulations containing different concentrations of EJO were evaluated for cure, morphology, thermal and viscoelastic properties. The curing temperature of the formulations increased with increasing EJO content. The glass transition temperature of the cured films decreased from 56 °C for unmodified epoxy resin to 23 °C for the sample with 60 wt% EJO reactive diluent, suggesting good plasticizing action. The thermal decomposition was More >

  • Open AccessOpen Access

    ARTICLE

    Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/ Purifi ed Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions

    Estefanía Lidón Sánchez-Safont1, Jennifer González-Ausejo1, José Gámez-Pérez1, José María Lagarón2, Luis Cabedo1*
    Journal of Renewable Materials, Vol.4, No.2, pp. 123-132, 2016, DOI:10.7569/JRM.2015.634127
    Abstract Novel biodegradable composites based on poly(3-hydroxybutirate-co-3-hydroxyvalerate) (PHBV) and different contents of purifi ed alpha-cellulose fi bers (3, 10, 25 and 45%) were prepared by melt blending and characterized. The composites were characterized by scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS) experiments, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanic analysis (DMA) and Shore D hardness measurements. Disintegrability under composting conditions was studied according to the ISO 20200 standard. Morphological results showed that high dispersion of the fi bers was achieved during mixing. Good adhesion on the fi ber-matrix interface was also detected by More >

  • Open AccessOpen Access

    ARTICLE

    Mineralization of Poly(lactic acid) (PLA), Poly(3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV Blend in Compost and Soil Environments

    Sudhakar Muniyasamy1,2, Osei Ofosu1,2, Maya Jacob John1,2, Rajesh D. Anandjiwala1,2*
    Journal of Renewable Materials, Vol.4, No.2, pp. 133-145, 2016, DOI:10.7569/JRM.2016.634104
    Abstract The present study investigates the mineralization of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-covalerate) (PHBV), and PLA/PHBV blend in compost and soil burial environments. The mineralization was assayed on the basis of carbon dioxide (CO2) release from the test materials incubated in compost and soil for a period of 200 days. The degradation was followed by means of fragmentation, thermogravimetric (TGA), FTIR spectroscopy and scanning electron microscopy (SEM) analyses. The results showed that PLA, PHBV and blend of PLA/PHBV achieved almost 90% biodegradation under composting conditions, while PHBV, PLA/PHBV blend and PLA respectively achieved only 35%, 32% More >

  • Open AccessOpen Access

    ARTICLE

    Investigation of CNSL-Based Hybrid Sol in Conventional Polymeric Material

    Dinesh Balgude, Anagha Sabnis*
    Journal of Renewable Materials, Vol.4, No.2, pp. 146-157, 2016, DOI:10.7569/JRM.2015.634117
    Abstract The performance properties of conventional polymeric material have been investigated by modifying it with cashew nut shell liquid (CNSL) derived hybrid precursor. The synthesis of hybrid material involved formation of maleic anhydride adduct of CNSL followed by silane modifi cation and subsequent hydrolysis and condensation with tetra ethyl orthosilicate. The developed hybrid material was characterized by a number of instrumental techniques like FT-IR, 1H-NMR and 13C-NMR, as reported in our earlier work. In the present work, we have investigated the effect of CNSL-based hybrid material on the performance properties of conventional alkyd-melamine formaldehyde-based stoving system.… More >

  • Open AccessOpen Access

    ARTICLE

    Synthesis of Cadmium Sulfi de Quantum Dots with Simultaneous Desulfurization of Kerosene Oil

    Shyamalima Sharma, Pronob Gogoi, Bhaskar Jyoti Saikia, Swapan K. Dolui*
    Journal of Renewable Materials, Vol.4, No.2, pp. 158-162, 2016, DOI:10.7569/JRM.2015.634116
    Abstract Cadmium sulfi de (CdS) quantum dots (QDs) were synthesized by a standard hydrothermal method with simultaneous desulfurization of kerosene oil. Sulfur containing kerosene oil was treated with cadmium chloride (CdCl2) in the presence of sodium hydroxide (NaOH) at 120 °C for 1.5 to 5 h. CdS was formed and sulfur content of oil gradually decreased. Thus, desulfurization of the oil occurred with the formation of the CdS QDs. The concentration of sulfur decreased to a minimum of 0.055% after 5 h of the reaction. In addition, the particle size of QDs increased from 5.4 nm More >

Per Page:

Share Link