Open Access
ARTICLE
From Fossil Resources to Renewable Resources: Synthesis, Structure, Properties and Comparison of Terephthalic Acid-2 ,5-Furandicarboxylic Acid-Diol Copolyesters
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun, 130022, Jilin, China
* Corresponding Author:
Journal of Renewable Materials 2015, 3(2), 120-141. https://doi.org/10.7569/JRM.2014.634139
Received 03 December 2014; Accepted 28 February 2015;
Abstract
Novel copolyesters were successfully synthesized from terephthalic acid (TPA), 2,5-furandicarboxylic acid (FDCA) and ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and 1,8-octanediol via direct esterifi cation method by using tetrabutyl titanate (TBT) as catalyst. The copolyesters were characterized by nuclear magnetic resonance spectroscopy (1 H-NMR), gel permeation chromatography (GPC), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and tensile tests. The results of GPC showed that all of the copolyesters had high molecular weight, with an average molecular weight (Mw) more than 1×104 g/mol. The results of 1 H-NMR showed that the copolyesters were random copolymers which compositions were well controlled by the feed ratio of the diacid monomers, and the degrees of randomness (B) values were near to 1.0 and 1.40. The results of DSC showed that all of the copolyesters had one glass transition temperature (Tg ) and the Tg s were between those of corresponding homopolyesters. The results of TGA showed that the copolyesters were thermally stable up to 370°C and had similar thermal stabilities to corresponding homopolyesters. The results of tensile tests showed that some of the PETF and PTTF copolyesters had better tensile strength and tensile modules, and PBTF, PHTF and POTF copolyesters had higher elongation at break.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.