Open Access iconOpen Access

ARTICLE

Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes

Heru Suryanto1,2,*, Daimon Syukri3, Fredy Kurniawan4, Uun Yanuhar5, Joseph Selvi Binoj6, Sahrul Efendi2, Fajar Nusantara2, Jibril Maulana7, Nico Rahman Caesar5, Komarudin Komarudin2

1 Centre of Advanced Material for Renewable Energy (CAMRY), Universitas Negeri Malang, Malang, 65145, Indonesia
2 Department of Mechanical and Industrial Engineering, Universitas Negeri Malang, Malang, 65145, Indonesia
3 Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia
4 Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
5 Study Program of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, 65145, Indonesia
6 Institute of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India
7 Faculty of Vocational, Universitas Negeri Malang, Malang, 65145, Indonesia

* Corresponding Author: Heru Suryanto. Email: email

Journal of Renewable Materials 2024, 12(9), 1605-1624. https://doi.org/10.32604/jrm.2024.054047

Abstract

Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences. The current study aims to utilize pineapple biowaste extract in producing bacterial cellulose acetate-based membranes with magnetic nanoparticles (Fe3O4 nanoparticles) through the fermentation and esterification process and explore its characteristics. The bacterial cellulose fibrillation used a high-pressure homogenization procedure, and membranes were developed incorporating 0.25, 0.50, 0.75, and 1.0 wt.% of Fe3O4 nanoparticles as magnetic nanoparticle for functionalization. The membrane characteristics were measured in terms of Scanning Electron Microscope, X-ray diffraction, Fourier Transform Infrared, Vibrating Sample Magnetometer, antibacterial activity, bacterial adhesion and dye adsorption studies. The results indicated that the surface morphology of membrane changes where the bacterial cellulose acetate surface looks rougher. The crystallinity index of membrane increased from 54.34% to 68.33%, and the functional groups analysis revealed that multiple peak shifts indicated alterations in membrane functional groups. Moreover, adding Fe3O4-NPs into membrane exhibits paramagnetic behavior, increases tensile strength to 73%, enhances activity against E. coli and S. aureus, and is successful in removing bacteria from wastewater of the river to 67.4% and increases adsorption for anionic dyes like Congo Red and Acid Orange.

Graphic Abstract

Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes

Keywords


Cite This Article

APA Style
Suryanto, H., Syukri, D., Kurniawan, F., Yanuhar, U., Binoj, J.S. et al. (2024). Enhanced dye adsorption and bacterial removal of magnetic nanoparticle-functionalized bacterial cellulose acetate membranes. Journal of Renewable Materials, 12(9), 1605-1624. https://doi.org/10.32604/jrm.2024.054047
Vancouver Style
Suryanto H, Syukri D, Kurniawan F, Yanuhar U, Binoj JS, Efendi S, et al. Enhanced dye adsorption and bacterial removal of magnetic nanoparticle-functionalized bacterial cellulose acetate membranes. J Renew Mater. 2024;12(9):1605-1624 https://doi.org/10.32604/jrm.2024.054047
IEEE Style
H. Suryanto et al., "Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes," J. Renew. Mater., vol. 12, no. 9, pp. 1605-1624. 2024. https://doi.org/10.32604/jrm.2024.054047



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 232

    View

  • 51

    Download

  • 0

    Like

Share Link