Open Access iconOpen Access

ARTICLE

crossmark

Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials

by Youssef Maaloufa1,2,3,*, Soumia Mounir1,2,3, Sara Ibnelhaj2, Fatima Zohra El Wardi6, Asma Souidi3, Yakubu Aminu Dodo4,5, Malika Atigui3, Mina Amazal3, Abelhamid Khabbazi2, Hassan Demrati3, Ahmed Aharoune3

1 National School of Architecture Agadir, New Complex, Ibn Zohr University, Agadir, Morocco
2 Energy, Materials and Sustainable Development (EMDD), Center for Water, Natural Resources, Environment and Sustainable Development (CERNE2D), Mohammed V University, Rabat, Morocco
3 Thermodynamics and Energetics Laboratory, Faculty of Science, Ibn Zohr University, Agadir, Morocco
4 Architectural Engineering Department, Najran University, Najran, Saudi Arabia
5 The Centre of Scientific and Engineering Research, Najran University, Najran, Saudi Arabia
6 Physics Department, LPMAT Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco

* Corresponding Author: Youssef Maaloufa. Email: email

(This article belongs to the Special Issue: Renewable Materials and Advanced Technologies for Sustainability)

Journal of Renewable Materials 2024, 12(4), 843-867. https://doi.org/10.32604/jrm.2024.049942

Abstract

The development of bio-sourced materials is essential to ensuring sustainable construction; it is considered a locomotive of the green economy. Furthermore, it is an abundant material in our country, to which very little attention is being given. This work aims to valorize the waste of the trunks of banana trees to be used in construction. Firstly, the physicochemical properties of the fiber, such as the percentage of crystallization and its morphology, have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers, with the purpose to promote the use of this material in construction. Secondly, the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive. Thirdly, the impact of the nature of the banana fiber distribution (either fiber mixed in matrix or fiber series model) on the flexural and compressive strengths of the composites was studied. The results obtained indicate that the insulation gain reaches up to 40%. It depends on the volume fraction and type of distribution of the banana fibers. However, the thermal inertia of the composites developed, represented by thermal diffusivity and thermal effusivity, was studied. Results indicate a gain of 40% and 25%, respectively, in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone. Concerning the mechanical properties, the flexural strength depends on the percentage of the volume fraction of banana fibers used, and it can reach 20% more than the flexural strength of plaster; nevertheless, there is a significant loss in terms of the compressive strength of the studied composites. The results obtained are confirmed by the microstructure of the fiber banana. In fact, the morphology of the banana fibers was improved by the drying process. It reduces the amorphous area and improves the cellulosic crystalline surfaces, which assures good adhesion between the fiber and the matrix plaster. Finally, the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.

Keywords


Cite This Article

APA Style
Maaloufa, Y., Mounir, S., Ibnelhaj, S., Wardi, F.Z.E., Souidi, A. et al. (2024). Thermo-physical potential of recycled banana fibers for improving the thermal and mechanical properties of biosourced gypsum-based materials. Journal of Renewable Materials, 12(4), 843-867. https://doi.org/10.32604/jrm.2024.049942
Vancouver Style
Maaloufa Y, Mounir S, Ibnelhaj S, Wardi FZE, Souidi A, Dodo YA, et al. Thermo-physical potential of recycled banana fibers for improving the thermal and mechanical properties of biosourced gypsum-based materials. J Renew Mater. 2024;12(4):843-867 https://doi.org/10.32604/jrm.2024.049942
IEEE Style
Y. Maaloufa et al., “Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials,” J. Renew. Mater., vol. 12, no. 4, pp. 843-867, 2024. https://doi.org/10.32604/jrm.2024.049942



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1296

    View

  • 456

    Download

  • 0

    Like

Share Link