Home / Journals / JRM / Vol.12, No.4, 2024
Special Issues
Table of Content
cover

On the Cover


The most widely investigated natural polymers for applications are plant cellulose, bacterial cellulose, chitosan, poly(lactic acid), and starch.  In this context, this work aims to describe the properties and potential applications of these renewable polymers in the biomedical context, the routes from the bench to the market, market prospects, and prospects for future developments.

View this paper

  • Open AccessOpen Access

    ARTICLE

    Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature

    Qingran Meng1,2, Wenwen Xu2, Zuobing Xiao2, Qinfei Ke1,2,*, Xingran Kou1,2,*
    Journal of Renewable Materials, Vol.12, No.4, pp. 629-641, 2024, DOI:10.32604/jrm.2023.029182 - 12 June 2024
    (This article belongs to the Special Issue: Application of Renewable Materials in Perfumes, Fragrances, and Cosmetics)
    Abstract Bio-based cyclodextrins (CDs) are a common research object in supramolecular chemistry. The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules. The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions. The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle, but also beneficial to its application. In the present study, the self-assembly behavior of epoxy-β-cyclodextrin (EP-β-CD) and mixed anionic and cationic surfactant system (sodium dodecyl sulfate/dodecyltrimethylammonium bromide, SDS/DTAB) in aqueous solution was studied. Morphological… More >

    Graphic Abstract

    Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature

  • Open AccessOpen Access

    REVIEW

    Renewable Polymers in Biomedical Applications: From the Bench to the Market

    Rauany Cristina Lopes1, Tamires Nossa2, Wilton Rogério Lustri1, Gabriel Lombardo3,4,5, Maria Inés Errea3,4, Eliane Trovatti1,*
    Journal of Renewable Materials, Vol.12, No.4, pp. 643-666, 2024, DOI:10.32604/jrm.2024.048957 - 12 June 2024
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them. Their uses have been increasing because of their attractive properties, contributing to the improvement of life quality, mainly in drug release systems and in regenerative medicine. Formulations using natural polymer, nano and microscale particles preparation, composites, blends and chemical modification strategies have been used to improve their properties for clinical application. Although many studies have been carried out with these natural polymers, the way to reach the market is long and only More >

  • Open AccessOpen Access

    REVIEW

    Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment: A Review

    Abderrezzaq Benalia1,2,*, Kerroum Derbal2, Zahra Amrouci2,3, Ouiem Baatache2, Amel Khalfaoui4, Antonio Pizzi5,*
    Journal of Renewable Materials, Vol.12, No.4, pp. 667-698, 2024, DOI:10.32604/jrm.2024.048306 - 12 June 2024
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This review describes the mechanisms of natural coagulants. It provides a good understanding of the two key processes of coagulation-flocculation: adsorption and charge neutralization, as well as adsorption and bridging. Various factors have influence the coagulation/flocculation process, including the effect of pH, coagulant dosage, coagulant type, temperature, initial turbidity, coagulation speed, flocculation speed, coagulation and flocculation time, settling time, colloidal particles, zeta potential, the effects of humic acids, and extraction density are explained. The bio-coagulants derived from plants are outlined. The impact of organic coagulants on water quality, focusing on their effects on the physicochemical… More >

    Graphic Abstract

    Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment: A Review

  • Open AccessOpen Access

    REVIEW

    Wood By-Products as UV Protection: A Consequence Review

    Naglaa Salem El‑Sayed, Mohamed Hasanin, Samir Kamel*
    Journal of Renewable Materials, Vol.12, No.4, pp. 699-720, 2024, DOI:10.32604/jrm.2024.049118 - 12 June 2024
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract In recent decades, the ozone layer has suffered considerable damage, increasing the entry of ultraviolet (UV) light into the atmosphere and reaching the earth’s surface, negatively affecting life. Accordingly, researchers aimed to solve this problem by synthesizing advanced UV-shielding materials. On the other hand, developing an easy and green strategy to prepare functional materials with outstanding properties based on naturally abundant and environmentally friendly raw materials is highly desirable for sustainable development. Because biomass-derived materials are sustainable and biodegradable, they present a promising substitute for petroleum-based polymers. The three main structural constituents of the plant More >

    Graphic Abstract

    Wood By-Products as UV Protection: A Consequence Review

  • Open AccessOpen Access

    ARTICLE

    A Comprehensive Analysis of the Thermo-Chemical Properties of Sudanese Biomass for Sustainable Applications

    Wadah Mohammed1,2, Zeinab Osman2, Salah Elarabi3, Bertrand Charrier1,*
    Journal of Renewable Materials, Vol.12, No.4, pp. 721-736, 2024, DOI:10.32604/jrm.2024.031050 - 12 June 2024
    (This article belongs to the Special Issue: Renewable Material from Agricultural Waste and By-Product and Its Applications)
    Abstract The chemical composition and thermal properties of natural fibers are the most critical variables that determine the overall properties of the fibers and influence their processing and use in different sustainable applications, such as their conversion into bioenergy and biocomposites. Their thermal and mechanical properties can be estimated by evaluating the content of cellulose, lignin, and other extractives in the fibers. In this research work, the chemical composition and thermal properties of three fibers, namely bagasse, kenaf bast fibers, and cotton stalks, were evaluated to assess their potential utilization in producing biocomposites and bioenergy materials.… More >

  • Open AccessOpen Access

    ARTICLE

    Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from Leucaena leucocephala Bark

    Rafidah Md Salim1,2,*, Jahimin Asik2, Mohd Sani Sarjadi2
    Journal of Renewable Materials, Vol.12, No.4, pp. 737-769, 2024, DOI:10.32604/jrm.2024.045695 - 12 June 2024
    Abstract Lignin extraction from bark can maximize the utilization of biomass waste, offer cost-effectiveness, and promote environmental friendliness when employed as an adhesive material in bark particleboard production. Particles of fine (0.2 to 1.0 mm), medium (1.0 to 2.5 mm), and coarse (2.5 to 12.0 mm) sizes, derived from the bark of Leucaena leucocephala, were hot-pressed using a heating plate at 175°C for 7 min to create single-layer particleboards measuring 320 mm × 320 mm × 10 mm, targeting a density of 700 kg/m. Subsequently, the samples were trimmed and conditioned at 20°C and 65% relative humidity.… More >

    Graphic Abstract

    Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from <i>Leucaena leucocephala</i> Bark

  • Open AccessOpen Access

    ARTICLE

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

    Yosr Laatiri, Habib Sammouda, Fadhel Aloulou*
    Journal of Renewable Materials, Vol.12, No.4, pp. 771-798, 2024, DOI:10.32604/jrm.2024.047022 - 12 June 2024
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings. Our contribution is the creation of insulating composite panels made of bio-based phase change materials (bio-PCM is all from coconut oil), cement and renewable materials (treated wood fiber and organic clay). The inclusion of wood fibers improved the thermal properties; a simple 2% increase of wood fiber decreased the heat conductivity by approximately 23.42%. The issues of bio-PCM leakage in the cement mortar and a roughly 56.5% reduction in thermal… More >

    Graphic Abstract

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

  • Open AccessOpen Access

    REVIEW

    New Problems of Boiler Corrosion after Coupling Combustion of Coal and Biomass and Anti-Corrosion Technologies

    Lei Wang1, Ziran Ma1,*, Chunlin Zhao1, Jiali Zhou1, Hongyan Wang1, Ge Li1, Ningling Zhou2
    Journal of Renewable Materials, Vol.12, No.4, pp. 799-814, 2024, DOI:10.32604/jrm.2024.047343 - 12 June 2024
    Abstract This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions. Biomass, as a renewable energy source, offers advantages in energy-saving and carbon reduction. However, the corrosive effects of alkali metal compounds, sulfur (S) and chlorine (Cl) elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels. We investigate the corrosion mechanisms, as well as the transfer of Cl and alkali metal elements during this process. Comparative corrosion analyses are conducted among coal-fired boilers, pure biomass boilers and boilers… More >

  • Open AccessOpen Access

    ARTICLE

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

    Xiaoyu Chen*
    Journal of Renewable Materials, Vol.12, No.4, pp. 815-826, 2024, DOI:10.32604/jrm.2024.048470 - 12 June 2024
    Abstract A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions. The core, made of sodium alginate-g-polyacrylamide and attapulgite nanofibers, was cross-linked by Calcium ions (Ca). The shell, composed of a chitosan/activated carbon mixture, was then coated onto the core. Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate. Scanning electron microscopy images showed the core-shell structure. The core exhibited a high water uptake ratio, facilitating the diffusion of methylene blue into the core. During the diffusion process, the methylene blue was first adsorbed by More >

    Graphic Abstract

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

  • Open AccessOpen Access

    ARTICLE

    Identification of Secondary Metabolites in Tunisian Tilia platyphyllos Scop. Using MALDI-TOF and GC-MS

    Ayda Khadhri1, Mohamed Mendili1, Marwa Bannour-Scharinger1, Eric Masson2, Antonio Pizzi2,*
    Journal of Renewable Materials, Vol.12, No.4, pp. 827-842, 2024, DOI:10.32604/jrm.2024.046950 - 12 June 2024
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This study is the first to evaluate the phytochemical content and biological properties of Tunisian T. platyphyllos Scop. A total of 23 compounds of essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis of bracts and fruit extracts. The results show that oxygenated monoterpenes were the dominant class of essential oils. The phenolic composition was investigated by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The analysis showed that the chemical profiles of the ethanolic extracts of bracts and fruits are substantially similar. The highest polyphenol content was found in the ethanolic extracts of the fruits (7.65… More >

    Graphic Abstract

    Identification of Secondary Metabolites in Tunisian <i>Tilia platyphyllos</i> Scop. Using MALDI-TOF and GC-MS

  • Open AccessOpen Access

    ARTICLE

    Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials

    Youssef Maaloufa1,2,3,*, Soumia Mounir1,2,3, Sara Ibnelhaj2, Fatima Zohra El Wardi6, Asma Souidi3, Yakubu Aminu Dodo4,5, Malika Atigui3, Mina Amazal3, Abelhamid Khabbazi2, Hassan Demrati3, Ahmed Aharoune3
    Journal of Renewable Materials, Vol.12, No.4, pp. 843-867, 2024, DOI:10.32604/jrm.2024.049942 - 12 June 2024
    (This article belongs to the Special Issue: Renewable Materials and Advanced Technologies for Sustainability)
    Abstract The development of bio-sourced materials is essential to ensuring sustainable construction; it is considered a locomotive of the green economy. Furthermore, it is an abundant material in our country, to which very little attention is being given. This work aims to valorize the waste of the trunks of banana trees to be used in construction. Firstly, the physicochemical properties of the fiber, such as the percentage of crystallization and its morphology, have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on… More >

  • Open AccessOpen Access

    REVIEW

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

    Xin Xue1,2,3, Haitao Li1,2,3,*, Rodolfo Lorenzo4
    Journal of Renewable Materials, Vol.12, No.4, pp. 869-894, 2024, DOI:10.32604/jrm.2024.029602 - 12 June 2024
    (This article belongs to the Special Issue: Bio-Composite Materials and Structures-2023)
    Abstract This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber (BS) in literature. According to literature reviews, the strength of BS under different load modes is affected by a series of factors, such as the type of original bamboo, growth position, resin content, treatment method and density. Therefore, different production processes can be adopted according to different requirements, and bamboo scrimbers can also be classified accordingly. In addition, this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS, so that readers can More >

    Graphic Abstract

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

Per Page:

Share Link