Open Access
ARTICLE
Parameter Study on a Composite Sound-Absorbing Structure Liner in Elevator Shafts
Key Laboratory of Urban and Architectural Heritage Conservation of Ministry of Education, School of Architecture, Southeast University, Nanjing, 210096, China
* Corresponding Author: Hequn Min. Email:
(This article belongs to the Special Issue: New Trends in Renewable and Sustainable Materials for Carbon Neutrality)
Journal of Renewable Materials 2023, 11(9), 3433-3446. https://doi.org/10.32604/jrm.2023.027136
Received 19 October 2022; Accepted 23 December 2022; Issue published 20 July 2023
Abstract
With the growing global environmental awareness, the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development. This paper proposed a novel eco-friendly sound absorbing structure (NSAS) liner for noise reduction in elevator shafts. The base layer integrated with the shaft walls is a damping gypsum mortarboard, and a rock wool board and a perforated cement mortarboard are used to compose the NSAS. Based on the acoustic impedance theory of porous materials and perforated panels, the sound absorption theory of the NSAS was proposed; the parameter effects of the rock wool board (flow resistivity, porosity, structure factor) and perforated panel (perforated rates, thickness, density, perforated diameter) on NSAS absorption were discussed theoretically for absorption improvement, and experiments were also conducted. Numerical results showed that the perforation rate, the thickness of the perforated plate, and the porosity, flow resistance, and volume density of the rock wool board played a key issue in the absorption performances of the NSAS. Experiments verified the accuracy of the proposed theoretical model. Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments, and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments. The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth. It can provide a reference for controlling the elevator shaft noise.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.