Home / Journals / JRM / Vol.10, No.4, 2022
Table of Content
cover

On the Cover


Nowadays, fabrication of high-performance benzoxazine thermosetting resins from bio-mass has spawn extensive interest owing to the increasing awareness of sustainable development. However, most bio-based benzoxazine thermosetting resins suffer from a certain flammability, which hampers their applications. This review provides the state of the current art of flame retardant bio-based benzoxazine resins derived from various bio-mass including diphenolic acid, vanillin, daidzein, cardanol, furfurylamine, etc.
View this paper

  • Open AccessOpen Access

    REVIEW

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

    Hongliang Ding, Xin Wang*, Lei Song, Yuan Hu
    Journal of Renewable Materials, Vol.10, No.4, pp. 871-895, 2022, DOI:10.32604/jrm.2022.018150
    (This article belongs to this Special Issue: Bio-based Halogen-free Flame Retardant Polymeric Materials)
    Abstract Benzoxazines have attracted wide attention from academics all over the world because of their unique properties. However, most of the production and preparation of benzoxazine resins depends on petroleum resources now, especially bisphenol A-based benzoxazine. Therefore, owing to the environmental impacts, the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines. Similar to petroleum-based benzoxazines, most of bio-based benzoxazines suffer from flammability. Thus, it is necessary to endow bio-based benzoxazines with outstanding flame retardancy. The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines. First, three methods of the… More >

    Graphic Abstract

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

  • Open AccessOpen Access

    ARTICLE

    Mechanical Properties and Microcosmic Properties of Self-Compacting Concrete Modified by Compound Admixtures

    Song Yang1, Bing Qi1, Zubin Ai1, Zhensheng Cao1, Shiqin He2,*, Lijun Li3
    Journal of Renewable Materials, Vol.10, No.4, pp. 897-908, 2022, DOI:10.32604/jrm.2022.016653
    (This article belongs to this Special Issue: Recycled Concrete Towards a Sustainable Society)
    Abstract It has become a research hotspot to explore raw material substitutes of concrete. It is important to research the mechanical properties of self-compacting concrete (SCC) with slag powder (SP) and rubber particle (RP) replacing cement and coarse aggregate, respectively. 12 kinds of composite modified self-compacting concrete (CMSCC) specimens were prepared by using 10%, 20% and 30% SP and 30%, 40%, 50% and 60% RP. The rheological properties, mechanical properties and microstructure of the CMSCC were investigated. Results indicate that the workability, compressive strength, splitting tensile strength and flexural strength of CMSCC prepared by 20% SP and less than 40% RP… More >

  • Open AccessOpen Access

    REVIEW

    Potential Economic Value of Chitin and Its Derivatives as Major Biomaterials of Seafood Waste, with Particular Reference to Southeast Asia

    Hsiao Wei Tan1, Zhi Yin Joan Lim2, Nur Airina Muhamad3, Fong Fong Liew4,*
    Journal of Renewable Materials, Vol.10, No.4, pp. 909-938, 2022, DOI:10.32604/jrm.2022.018183
    (This article belongs to this Special Issue: Bio-based/Degradable Materials towards A Sustainable Future)
    Abstract With a growing population, changes in consumerism behavior and trends in consumption in Indo-Pacific Asia, our seafood processing and consumption practices produce a large volume of waste products. There are several advantages in regulating and sustaining shellfish processing industries. The major advantage of waste management is that it leads to better conservation of natural resources in the long run. Shrimp shell waste contains useful biomaterials, which are still untapped due to inadequate waste disposal and solid waste management. Chitin, the major component of shell waste, can be extracted either chemically or biologically. The chemical extraction approaches, which use acids and… More >

    Graphic Abstract

    Potential Economic Value of Chitin and Its Derivatives as Major Biomaterials of Seafood Waste, with Particular Reference to Southeast Asia

  • Open AccessOpen Access

    ARTICLE

    Development and Application of a High-Volume Recycled Powder Solidifying Material for Waterworks Sludge

    Xiang Deng1, Sudong Hua1,*, Fan Xia2, Yanfang Zhang2, Dapeng Guo3, Xinxing Zhu3, Defei Zhu3
    Journal of Renewable Materials, Vol.10, No.4, pp. 939-953, 2022, DOI:10.32604/jrm.2022.016874
    (This article belongs to this Special Issue: New Trends in Sustainable Materials for Energy Conversion, CO2 Capture and Pollution Control)
    Abstract Recycled powder (RP) is produced as a by-product during the process of recycling construction and demolition (C&D) wastes, presenting a low additional value. Using RP-based solidifying material can not only improve its utilization efficiency, but also reduce the cost of commercial solidifying materials. To date, this is the best solidifying material utilized to dispose the original waterworks sludge (OWS) with high moisture contents (60%), and the product could be used to fabricate non-fired bricks. This has become a new environment-friendly technology of “using waste to treat waste”. In this paper, the influence of different particle sizes and dosages of RP… More >

  • Open AccessOpen Access

    ARTICLE

    Rapid Immobilization of Transferable Ni in Soil by Fe78Si9B13 Amorphous Zero-Valent Iron

    Liefei Pei, Xiangyun Zhang, Zizhou Yuan*
    Journal of Renewable Materials, Vol.10, No.4, pp. 955-968, 2022, DOI:10.32604/jrm.2022.016961
    (This article belongs to this Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Fe-Si-B amorphous zero-valent iron has attracted wide attention because of its efficient remediation of heavy metals and dye wastewater. In this paper, the remediation effect of amorphous zero-valent iron powder (Fe78Si9B13AP) on Ni contaminated soil was investigated. Results show that the immobilization efficiency of nickel in soil by Fe78Si9B13AP with low iron content is higher than that by ZVI. The apparent activation energies of the reactions of Fe78Si9B13AP with Ni2+ ions is 25.31 kJ/mol. After continuing the reaction for 7 days, Ni2+ ions is mainly transformed into monoplasmatic nickel (Ni0) and nickel combined with iron (hydroxide) oxides. Microstructure investigations show… More >

  • Open AccessOpen Access

    REVIEW

    Application of Fe-Based Amorphous Alloy in Industrial Wastewater Treatment: A Review

    Liefei Pei, Xiangyun Zhang, Zizhou Yuan*
    Journal of Renewable Materials, Vol.10, No.4, pp. 969-991, 2022, DOI:10.32604/jrm.2022.017617
    Abstract Amorphous alloy (MGs) is a solid alloy with disordered atomic accumulation obtained by ultra-rapid solidification of alloy melt. The atom deviates from the equilibrium position and is in metastable state. Up to now, a large number of MGs have been applied to the treatment of dye and heavy metal contaminated wastewater and ideal experimental results have been obtained. However, there is no literature to systematically summarize the chemical reaction and degradation mechanism in the process of degradation. On the basis of reviewing the classification, application, and synthesis of MGs, this paper introduces in detail the chemical reactions such as decolorization,… More >

  • Open AccessOpen Access

    ARTICLE

    Experimental Study on the Bending Properties of Grouting Butt Joints Reinforced by Steel Plate Embedded in Bamboo Tube

    Ting Huang, Xin Zhuo*
    Journal of Renewable Materials, Vol.10, No.4, pp. 993-1005, 2022, DOI:10.32604/jrm.2022.017373
    (This article belongs to this Special Issue: Bio-based/Degradable Materials towards A Sustainable Future)
    Abstract The construction of grouting butt joints of bamboo tubes is simple and efficient. However, when the joint is bent, the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube. In this paper, a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated, fully perforated, and semiperforated steel plates embedded in bamboo tubes to obtain the load-displacement curves and ultimate bearing capacity of various specimens. The strengthening effect of CFRP pasted on bamboo tubes was also studied. The results show that the opening… More >

    Graphic Abstract

    Experimental Study on the Bending Properties of Grouting Butt Joints Reinforced by Steel Plate Embedded in Bamboo Tube

  • Open AccessOpen Access

    ARTICLE

    Preparation of Micro-Iron Ore Tailings by Wet-Grinding and Its Application in Sulphoaluminate Cement

    Yingchun Yang1,*, Liqing Chen1, Xingdong Sun1, Yuguang Mao2
    Journal of Renewable Materials, Vol.10, No.4, pp. 1007-1023, 2022, DOI:10.32604/jrm.2022.017372
    Abstract Herein, micro iron ore tailings (micro-IOTs) were prepared by wet-grinding and applied to improve sulphoaluminate cement (SAC) performance. The physicochemical properties of micro-IOTs were investigated by particle size analysis, XRD, and XPS. The hydrates trait and the hydration mechanism of micro-IOTs-SAC composite were studied by XRD, TGA, MIP, and SEM. The results demonstrated that micro-IOTs with an average grain diameter of 517 nm could be obtained by wet-grinding. The setting time of SAC gradually decreased with increasing micro-IOTs content. By adding 2% micro-IOTs, the compressive strengths of SAC pastes were enhanced about 22% and 10% at 4 h and 28… More >

  • Open AccessOpen Access

    ARTICLE

    The Effect of Bio-Oil on High-Temperature Performance of Bio-Oil Recycled Asphalt Binders

    Hengcong Zhang*, Jianmin Wu, Zhong Qin, Yin Luo
    Journal of Renewable Materials, Vol.10, No.4, pp. 1025-1037, 2022, DOI:10.32604/jrm.2022.017483
    (This article belongs to this Special Issue: Renewable and Biosourced Adhesives-2021)
    Abstract Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability. This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse. The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%, 2%, 4%, and 6%, respectively. The results showed that bio-oil increased the penetration of aged asphalt binder, the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6% reached the standard of… More >

  • Open AccessOpen Access

    ARTICLE

    Crystallization and Dynamic Mechanical Behavior of Coir Fiber Reinforced Poly(Butylene Succinate) Biocomposites

    Xu Yan1, Changheng Liu2, Liang Qiao1, Kaili Zhu2, Hongsheng Tan1,*, Shuhua Dong1, Zhitao Lin1
    Journal of Renewable Materials, Vol.10, No.4, pp. 1039-1048, 2022, DOI:10.32604/jrm.2022.017239
    (This article belongs to this Special Issue: Natural Fibre Composites: Design, Materials Selection and Fabrication)
    Abstract The crystallization behavior, crystal morphology and form, and viscoelastic behavior of poly(butylene succinate) (PBS) and coir fiber/PBS composites (CPB) were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers. POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites. XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical. In addition, the storage modulus of CPB significantly… More >

Per Page:

Share Link

WeChat scan