Special Issue "Renewable and Biosourced Adhesives-2021"

Submission Deadline: 31 December 2021 (closed)
Submit to Special Issue
Guest Editors
Antonio Pizzi is Prof. Emeritus of Industrial Chemistry, ENSTIB, University of Lorraine, France. Previously Prof of Polymer Chemisry and Head of the Chemistry Dept. of the University of the Witwatersrand, Johannesburg, South Africa. Three doctorates (Dr. Chem, Rome, Italy, PhD, South Africa, D.Sc. South Africa). Several international scientific prizes (twice the finalist prize of the René Descartes top prize of the European Commission, in 2000 and 2005). Specialisations: thermosetting resins, synthesis and formulation of resins and wood adhesives, adhesives from natural products, polymer chemistry, polycondensation, wood panels and other composites technology, environment-friendly wood preservatives, materials science, wood welding. Author of 11 books published in New York and of 805 publications in refereed journals, and 41 patents, with his H-Index of 71.

Summary

The field of adhesives is in constant and rapid evolution with considerable novelties been published constantly. In particular the strong tred at present is to develop alternatives to synthetic oil-derived adhesives. A number of different trends are present on this front. Different approaches can be noticed such as (i) adhesives where a renewable biosourced material is used as partial but consistent substitution of an oil derived material leading to hybrid but definetely more enviroment friendly adhesives, and (ii) adhesives based totally or partially on synthesis materials but these being exclusively derived from totally biosourced renewable materials, and (iii) Adhesives based on totally renewable materials, modified or unmodified. All these three trends are strongly represented at present.


Keywords
aminoplastics adhesives, phenolic adhesives, polyurethane adhesives, non-isocyanate polyurethane adhesives (NIPU), acrylic adhesives, epoxy adhesives, renewable resources, environment friendly, partially or totally biobased.

Published Papers
  • Study on Microwave Pretreatment Technology to Improve the Effect of Shellac Impregnation of Fast-Growing Chinese Fir
  • Abstract To improve the mechanical properties of fast-growing Chinese fir (Cunnighamia lanceolate), expand its range of application, increase its value, and avoid the environmental pollution caused by impregnation with synthetic resin, Chinese fir was impregnated with a shellac solution. Since the shellac solution was difficult to penetrate into fast-growing Chinese fir, so microwave pretreatment was used to irradiate the wood to improve the permeability. This study investigated the effects of four factors, including the content of moisture in the wood before it was microwaved, the chamber pressure of microwave, the time of microwaving and the vacuum impregnation on the mechanical properties… More
  •   Views:504       Downloads:173        Download PDF

  • The Effect of Bio-Oil on High-Temperature Performance of Bio-Oil Recycled Asphalt Binders
  • Abstract Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability. This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse. The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%, 2%, 4%, and 6%, respectively. The results showed that bio-oil increased the penetration of aged asphalt binder, the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6% reached the standard of… More
  •   Views:398       Downloads:257        Download PDF

  • Lignocellulosic Micro and Nanofibrillated Cellulose Produced by Steam Explosion for Wood Adhesive Formulations
  • Abstract The reinforcing impact of Lignocellulosic micro and nanofibrillated cellulose (L-MNFCs) obtained from Eucalyptus Globulus bark in Urea-Formaldehyde UF adhesive was tested. L-MNFCs were prepared by an environmentally friendly, low-cost process using a combination process involving steam explosion followed by refining and ultra-fine grinding. Obtained L-MNFCs showed a web-like morphology with some aggregates and lignin nanodroplets. They present a mixture of residual fibers and fine elements with a width varying between 5 nm to 20 μm, respectively. The effects of the addition of low amounts of L-MNFCs (1% wt.) on the properties of three different adhesives (Urea-Formaldehyde UF, Phenol-Formaldehyde PF, and Tannin-Hexamine TH)… More
  •   Views:692       Downloads:495        Download PDF

  • Plasma Treatment Induced Chemical Changes of Alkali Lignin to Enhance the Performances of Lignin-Phenol-Formaldehyde Resin Adhesive
  • Abstract Alkali lignin was processed by plasma and then used in modification of phenol formaldehyde resin in this study. Chemical structural changes of lignin which was processed by plasma as well as bonding strength, tensile property, curing performance and thermal property of the prepared phenol formaldehyde resin which was modified by the plasma processed lignin were analyzed. Results demonstrated that: (1) Alkali lignin was degraded after the plasma processing. The original groups were destroyed, and the aromatic rings collected abundant free radicals and oxygen-containing functional groups like hydroxyls, carbonyls, carboxyls and acyls were introduced into increase the reaction activity of lignin… More
  •   Views:918       Downloads:664        Download PDF