Special Issues
Table of Content

Plastic waste management towards a sustainable future

Submission Deadline: 28 February 2021 (closed) View: 184

Guest Editors

Prof. Wan-Ting (Grace) Chen, Professor, University of Massachusetts Lowell, USA
Prof. Grace Chen is the director of the Plastic & Environment Research Laboratory (PERL) at the University of Massachusetts Lowell. Her research group has extensive experience in the chemical recycling of plastic waste, biodegradable plastic material, and biowaste conversion processes.

Prof. Hui Jin, Professor, Xi’an Jiaotong University, China
Prof. Hui Jin’s research fields focuses on a poly-generation technology based on coal gasification for hydrogen production, power generation and heat supply (Steaming coal with supercritical water gasification), the harmless treatment and resource utilization of biomass and organic wastes, theory in multiphase flow in thermochemistry.He has published more than 90 papers with more than 2000 citations with an h-index 27. In addition, 5 first-authored papers of his have been selected as ESI top papers (1 hot paper). Prof. Jin also has public or authorized 15 patents and 12 invited talks.

Prof. Syang-Peng Rwei, Professor, National Taiwan University, Taiwan
Prof. Syang-Peng Rwei is a well-known expert in polymer synthesis, fiber spinning, melt rheology, fabric coating and pigment dispersion area. Prof. Rwei has been served as a distinguished professor at Institute of Organic and Polymeric Materials at National Taipei University of Technology since 2013. Prof. Rwei obtained his PhD in Case Western Reserve University, M.S. in Clarkson University, and B.S. in National Taiwan University. Prof. Rwei has also worked in the fiber R&D department at BASF before returning to academia. He has published more than 75 papers with more than 2000 citations with an h-index 24.

Prof. Shaoqing Cui, Assistant Professor, the University of Tennessee –Knoxville, USA
Prof. Cui is an assistant professor of the Center for Renewable Carbon at the University of Tennessee –Knoxville. Her primary research areas focus on bio-based products derived from biomass materials, biodegradable plastics, and CO2 utilization.

Summary

More than eight billion tons of plastic waste has accumulated worldwide over the past 50 years. The majority (80%) of the waste goes directly into landfills and 3% ends up in the oceans. At the current rate, we will end up having more plastic than fish in the ocean by 2050. Plastics are persistent in the environment and degrade slowly (over a century), releasing fragments, microplastics, and toxic chemicals into our lands, rivers, and oceans. In particular, single-use packaging, textile, and composite plastic such as e-waste are attributed to more than 50% of the plastic waste.
The overall goal of this special issue is to shed light on the area of plastic waste management. Topics of interest include but not limited to mechanical recycling, chemical recycling, biodegradation, micro-/nano-plastic, characterization methods for plastic waste, policy analysis, techno-economic and lifecycle analysis of plastic waste management. New knowledge reported in this special issue will provide guidance for sustainable development as well as future manufacturing of plastic products.


Keywords

Plastic recycling; Waste management; Microplastic; Plastic additives; Life cycle analysis; Circular economy

Published Papers


  • Open Access

    ARTICLE

    Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect

    Meng Xiang, Zhou Yang, Jingjing Yang, Tong Lu, Danqi Wu, Zhijun Liu, Rongjie Xue, Shuang Dong
    Journal of Renewable Materials, Vol.10, No.3, pp. 821-831, 2022, DOI:10.32604/jrm.2022.017347
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract Influenced by recent COVID-19, wearing face masks to block the spread of the epidemic has become the simplest and most effective way. However, after the people wear masks, thousands of tons of medical waste by used disposable masks will be generated every day in the world, causing great pressure on the environment. Herein, conductive polymer composites are fabricated by simple melt blending of mask fragments (mask polypropylene, short for mPP) and multi-walled carbon nanotubes (MWNTs). MWNTs were used as modifiers for composites because of their high strength and high conductivity. The crystalline structure, mechanical, electrical… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Hydrophobic Behavior of Carbon Spheres Coated Surface Made from Microplastics

    Peng Liu, Bin Bai, Cui Wang, Yunan Chen, Zhiwei Ge, Wenwen Wei, Hui Jin
    Journal of Renewable Materials, Vol.9, No.12, pp. 2159-2174, 2021, DOI:10.32604/jrm.2021.016166
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract In this paper, a simple method to plate a hydrophobic coating on the inner surface of a small-scaled tube was proposed, where the coating consisted of carbon microspheres. Three common plastics polystyrene, polycarbonate and polyethylene were used as the feedstocks to be processed in supercritical water in a quartz tubular reactor. After reaction, the contact angle of droplet on the inner surface of the quartz tube was turned out to be over 100°, significantly larger than that of the blank tube 54°. When processing polystyrene in the 750C supercritical water for 10 min, the largest… More >

    Graphic Abstract

    Experimental Investigation on Hydrophobic Behavior of Carbon Spheres Coated Surface Made from Microplastics

  • Open Access

    ARTICLE

    Biodegradable Behavior of Waste Wool and Their Recycled Polyester Preforms in Aqueous and Soil Conditions

    Sudhakar Muniyasamy, Asis Patnaik
    Journal of Renewable Materials, Vol.9, No.10, pp. 1661-1671, 2021, DOI:10.32604/jrm.2021.014904
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract Present study deals with the biodegradable behavior of individual components and their preforms of nonwoven biocomposites developed from waste wool fibers including coring wool (CW), dorper wool (DW) and recycled polyester fibers (RPET). A respirometric technique was employed to estimate the production of CO2 during the biodegradation experiments under soil and aqueous media conditions. Functional groups of test samples before and after biodegradation were analyzed using Fourier transform infrared spectroscopy (FTIR). Leaching chemicals such as formaldehyde (hydrolyzed) and Chromium VI (Cr VI) was also measured. The CO2 emission in wool fibers CW and DW indicated 90%… More >

  • Open Access

    ARTICLE

    Life Cycle Assessment of Recycling High-Density Polyethylene Plastic Waste

    Neeti Gandhi, Nicholas Farfaras, Nien-Hwa Linda Wang, Wan-Ting Chen
    Journal of Renewable Materials, Vol.9, No.8, pp. 1463-1483, 2021, DOI:10.32604/jrm.2021.015529
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract Increasing production and use of various novel plastics products, a low recycling rate, and lack of effective recycling/disposal methods have resulted in an exponential growth in plastic waste accumulation in landfills and in the environment. To better understand the effects of plastic waste, Life Cycle Analysis (LCA) was done to compare the effects of various production and disposal methods. LCA shows the specific effects of the cradle-to-grave or cradle-to-cradle scenarios for landfill, incineration, and mechanical recycling. The analysis clearly indicates that increasing recycling of plastics can significantly save energy and eliminate harmful emissions of various… More >

  • Open Access

    ARTICLE

    Glycolysis Recycling of Waste Polyurethane Rigid Foam Using Different Catalysts

    Xiaohua Gu, Hongxiang Luo, Shiwei Lv, Peng Chen
    Journal of Renewable Materials, Vol.9, No.7, pp. 1253-1266, 2021, DOI:10.32604/jrm.2021.014876
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract Dramatically increasing waste polyurethane rigid foam (WPRF) draws the attention of the world. A mixture of ethylene glycol (EG) and diethylene glycol (DEG) is used as glycolysis agents. WPRF was subjected to alcoholysis using different catalysts which are titanium ethylene glycol and potassium hydroxide to obtain recycled polyol, respectively. The effect of a different catalyst on the viscosity and hydroxyl value of recycled polyol is discussed. The regenerated polyurethane (RPU) is performed using the recycled polyol. Infrared spectrum, compressive strength, apparent density, water absorption, scanning electron microscope, and thermogravimetric analysis are carried out to investigate… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Thermoplastic Poly(Ester Amide)s Elastomer (TPEaE) Obtained from Recycled PET

    Zhi-Yu Yang, Yi-Ling Chou, Hao-Chun Yang, Chin-Wen Chen, Syang-Peng Rwei
    Journal of Renewable Materials, Vol.9, No.5, pp. 867-880, 2021, DOI:10.32604/jrm.2021.014476
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE) copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET can be efficiently recovered and recycled into value-added products from a practical and economical point of view. The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature (Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducing the amide group, and the formation of amide-ester More >

  • Open Access

    ARTICLE

    Effect of Recycling Cycles on the Mechanical and Damping Properties of Flax Fibre Reinforced Elium Composite: Experimental and Numerical Studies

    Sami Allagui, Abderrahim El Mahi, Jean-Luc Rebiere, Moez Beyaoui, Anas Bouguecha, Mohamed Haddar
    Journal of Renewable Materials, Vol.9, No.4, pp. 695-721, 2021, DOI:10.32604/jrm.2021.013586
    (This article belongs to the Special Issue: Plastic waste management towards a sustainable future)
    Abstract This manuscript deals with the effects of recycling on the static and dynamic properties of flax fibers reinforced thermoplastic composites. The corresponding thermoplastic used in this work is Elium resin. It’s the first liquid thermoplastic resin that allows the production of recycled composite parts with promising mechanical behavior. It appeared on the resin market in 2014. But until now, no studies were available concerning how it can be recycled and reused. For this study, a thermocompression recycling process was investigated and applied to Elium resin. Flax fiber-reinforced Elium composites were produced using a resin infusion… More >

Share Link