Submission Deadline: 30 April 2024 (closed) View: 178
Throughout the past several decades, natural fibres, such as cellulosic fibres, have been the subject of the most promising study for their potential to replace synthetic fibres. This is owing to the intrinsic characteristics of natural fibres, such as their renewability, vast availability, low manufacturing cost, and biodegradability. Many items have been reinforced using polymer composites including natural fibres such as kenaf, bamboo, banana, jute, flax oil palm, and sugar palm. Various chemical (alkalinisation, bleaching, silane treatment, etc.) and physical (electron beam, heat treatment, etc.) modification approaches have been undertaken to improve adhesion and compatibility between cellulosic fibres and their matrix. As a result, the finished biocomposites have superior characteristics to their constituent elements. Biocomposites are characterised as materials composed of two or more constituent materials, primarily fibre reinforcements and matrices, that are bound together.
Biocomposites of natural fibre-reinforced polymers are one of the new materials that will replace synthetic-based materials in a variety of industrial industries. Many industries and areas, including food packaging, aerospace, automotive, sporting goods, home items, biomedical and rehabilitation equipments, marine, construction, and electrical devices, currently employ biocomposites. In addition, natural fibre biocomposites have the potential to be used in transport components and products such as train (interior panelling for rail vehicles, train seat panelling, and door leaves), naval (hull and deck), aircraft (radome, interior and exterior body panels), and automotive (radome, interior and exterior body panels) (door panels, dashboard, car bumper beam, spoiler, and mounting engine rubber). The utilisation of natural fibre biocomposites would enhance the performance of transportation vehicles by reducing their weight, hence reducing fuel consumption and carbon emissions. Its application also appears to have great potential for usage in rehabilitation equipment, such as a superior alternative for the padding found in commercially available spinal orthoses.
The purpose of this Special Issue is to present a selection of reference papers, reviews, or communications representing the latest results in the field of natural fibre reinforced polymer composites, which will enrich current and future literature data. Considering the great importance of this fascinating area of research, the goal of this Special Issue is to present a selection of reference papers, reviews, or communications representing the latest results in the field.
In an effort to investigate these hypotheses, the focus of this special issue will be on new horizons in the research, development, and improvement of the characteristics of fiber-reinforced polymer composites, as well as the possible structural applications of these materials. Articles based on original research as well as reviews are encouraged.
The following are examples of potential themes; however, this list is not exhaustive:
1. Natural fibres reinforcements and fillers
2. Synthetic and bio-based polymer matrices
3. Hybrid fibres-based composites
4. Additive manufacturing technology
5. Treatments and modifications of polymer composites
6. Manufacturing process of polymer composites
7. Conceptual design, material selection and product development of natural fibre reinforced polymer composites
8. Life cycle analysis of natural fibre reinforced polymer composites products
9. Applications of natural fibre reinforced polymer composites for assistive devices, biomedical and rehabilitation equipment.