Special Issues
Table of Content

New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications

Submission Deadline: 30 September 2022 (closed) View: 122

Guest Editors

Dr. Ram Prasad, Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
Ram Prasad, is associated with the Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India. His research interest includes applied and environmental microbiology, plant-microbe-nanointerface, sustainable agriculture and nanobiotechnology. He has more than 175 publications to his credit, including research papers, review articles and book chapters and five patents issued or pending and edited or authored several books. Previously, he served as Assistant Professor, Amity University, Uttar Pradesh, India; Visiting Assistant Professor, Whiting School of Engineering, Department of Mechanical Engineering at Johns Hopkins University, Baltimore, USA; and Research Associate Professor at School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.

Prof. Vijay Kumar Thakur, Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, UK
Vijay's research interests include the synthesis and processing of bio-based polymers, nanostructured materials, hydrogels, polymer micro/ nanocomposites, nanoelectronic materials, engineering nanomaterials, electrochromic materials, green synthesis of nanomaterials, and surface functionalization of polymers/nanomaterials. He has published over 200 SCI journal articles, 50 books, 40 Book Chapters and hold one US patent (technology transferred to Industry). He also sits on the editorial board of several SCI Journals as Associate Editor/ Editor/ Editorial Advisory Board Member.

Summary

Understanding the innovative strategies for synthesis, assembly, and modification of advanced nanomaterials with novel geomorphology, structure, and unembellished active sites which greatly benefit their performance in energy, environmental remediation, environmental catalysis, agricultural system and development of different kinds of nanostructured photocatalysts for several technological applications.

This special issue aims to publish the high-quality outstanding collection of original research, mini-review or extended review, case study, short communication, based on current research and developments on bionanomaterials, utilization in energy, environmental and agricultural applications along with their prospects. This will also help them to understand and address problems faced in the agricultural, energy and environmental sectors by utilization of bionanomaterials. Potential topics include, but are not limited to:

• Nanomaterials with innovative geomorphology, structure, and exposed active sites

• Nanomaterials utilization for energy, environmental and agricultural sustainability

• Nanobiosensors for energy, environmental and agricultural fields

• Roles in the degradation of pollutants, wastewater treatment, disinfection, and wastes reutilization

• Mechanistic approaches for photocatalysis, catalytic reaction, renewable energy and environmental remediation

• Solar-assisted photocatalytic splitting of water and removal of pollutants

• Modelling of nanomaterials, simulation, CO2 capture, storage, and conversion


Keywords

Nanobiotechnology, Nanosensors, Photocatalysis, Dye degradation, Wastewater treatment, Pesticides, Insecticides, Environmental protection, Renewable energy, Environmental remediation

Published Papers


  • Open Access

    REVIEW

    Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles

    Kakudji Kisimba, Anand Krishnan, Mbuso Faya, Kahumba Byanga, Kabange Kasumbwe, Kaliyapillai Vijayakumar, Ram Prasad
    Journal of Renewable Materials, Vol.11, No.6, pp. 2575-2591, 2023, DOI:10.32604/jrm.2023.026159
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Nanoparticles have distinct properties that make them potentially valuable in a variety of industries. As a result, emerging approaches for the manufacture of nanoparticles are gaining a lot of scientific interest. The biological pathway of nanoparticle synthesis has been suggested as an effective, affordable, and environmentally safe method. Synthesis of nanoparticles through physical and chemical processes uses unsafe materials, expensive equipment and adversely affects the environment. As a result, in order to support the increased utilization of nanoparticles across many sectors, nanotechnology research activities have shifted toward environmentally safe and cost-effective techniques that outperform chemical… More >

    Graphic Abstract

    Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles

  • Open Access

    ARTICLE

    The Antibacterial Activities of Copper Oxide Nanoparticles Synthesized Using Laser Ablation in Different Surfactants against Streptococcus mutans

    Ruaa H. Abbas, A. Kadhim, Azhar M. Haleem
    Journal of Renewable Materials, Vol.11, No.5, pp. 2109-2123, 2023, DOI:10.32604/jrm.2023.025112
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Copper oxide nanoparticles (CuO NPs) were synthesised with laser ablation of a copper sheet immersed in deionized water (DW), cetrimonium bromide (CTAB), and sodium dodecyl sulphate (SDS), respectively. The target was irradiated with a pulsed Nd: YAG laser at 1064 nm, 600 mJ, a pulse duration of 10 ns, and a repetition rate of 5 Hz. The CuO NPs colloidal were analyzed using UV–Vis spectroscopy, the Fourier transform infrared (FTIR) spectrometer, zeta potential (ZP), X-ray diffraction (XRD), transmission electron microscope (TEM) and field emission scanning electron microscopy (FESEM). The absorption spectra of CuO NPs colloidal… More >

  • Open Access

    ARTICLE

    Green Hydrothermal Synthesis and Applications of Sorbus pohuashanensis/Aronia melanocarpa Extracts Functionalized-Au/Ag/AuAg Nanoparticles

    Jin Huang, Jixiang Sun, Kai Shao, Yamei Lin, Zhiguo Liu, Yujie Fu, Liqiang Mu
    Journal of Renewable Materials, Vol.11, No.4, pp. 1807-1821, 2023, DOI:10.32604/jrm.2023.023721
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Nanoparticles (NPs) have already been widely used in catalysis, antibacterial and coating fields. Compared with the traditional toxic and harmful reducing reagents, green synthesis of NPs by using plant extracts is not only environmental-friendly and cost-effective but also conducive to the multi-level and efficient utilization of wild plant resources. In this study, the aqueous extracts from Sorbus pohuashanensis (SP) and Aronia melanocarpa (AM) fruits were used as the reducing and protective reagents for synthesizing Au/AgNPs, with the characteristics of originality operation and high repeatability. The SP/AM fruit extracts functionalized Au/AgNPs were characterized by UV-vis spectroscopy (UV-vis), transmission… More >

    Graphic Abstract

    Green Hydrothermal Synthesis and Applications of <i>Sorbus pohuashanensis</i>/<i>Aronia melanocarpa</i> Extracts Functionalized-Au/Ag/AuAg Nanoparticles

  • Open Access

    ARTICLE

    Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery

    Yuchen Yang, Lin Ma, Jie Yu, Zewen Zhao, Pengfei You
    Journal of Renewable Materials, Vol.11, No.3, pp. 1153-1179, 2023, DOI:10.32604/jrm.2022.022719
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract The use of nanorefrigerants in Organic Rankine Cycle (ORC) units is believed to affect the cycle environment performance, but backed with very few relevant studies. For this purpose, a life cycle assessment (LCA) has been performed for the ORC system using nanorefrigerant, the material and energy input, characteristic indicators and comprehensive index of environmental impact, total energy consumption and energy payback time (BPBT) of the whole life cycle of ORC system using Al2O3/R141b nanorefrigerant were calculated. Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5% after adding 0.2% Al2O3 nanoparticles to R141b. Based on… More >

  • Open Access

    REVIEW

    Phytogenic Synthesis of Metal/Metal Oxide Nanoparticles for Degradation of Dyes

    Arpita Roy, H. C. Ananda Murthy , Hiwa M. Ahmed, Mohammad Nazmul Islam, Ram Prasad
    Journal of Renewable Materials, Vol.10, No.7, pp. 1911-1930, 2022, DOI:10.32604/jrm.2022.019410
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Now-a-days nanotechnology is one of the booming fields for the researchers. With the increase in industrialization mainly textile, paper, medicine, plastic industry, there is an increase in concentration of organic dyes as pollutant. Release of harmful dyes in water bodies has become a serious issue, as most of the dyes are carcinogenic and mutagenic in nature and causes various diseases. Therefore, there is a requirement to find out new approaches for efficient treatment of effluent containing dyes. Nanoparticles are one of the potential solutions to this problem. They can be synthesized from different methods, however More >

  • Open Access

    ARTICLE

    Synthesis of Hierarchical TS-1 and Its Recycling Catalytic Property for Oxidative Desulfurization

    Jinglong Huai, Xiaoxue Liu, Yinhai Zhang, Yang Yang, Yan Gou, Li Qin, Jinling Shan, Yancheng Zheng, Hao Li
    Journal of Renewable Materials, Vol.10, No.6, pp. 1711-1726, 2022, DOI:10.32604/jrm.2022.018474
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Because of its unique pore structure, good hydrothermal stability and high specific surface area, hierarchical TS-1 zeolite (HTS-1) has become an important catalyst for the deep oxidative desulfurization of fuel oils. In this work, HTS-1 has been successfully synthesized by a hydrothermal crystallization method using the C-SiO2 composite as both silicon source and mesoporous template, tetrapropylammonium hydroxide as microporous template, and tetrabutylorthotitanate as titanium source. The C-SiO2 composite is obtained by mild carbonization of the SiO2/T-40 (Tween 40) xerogel, which is prepared by the two step sol-gel method. The reaction conditions for the oxidative desulfurization (ODS) of… More >

    Graphic Abstract

    Synthesis of Hierarchical TS-1 and Its Recycling Catalytic Property for Oxidative Desulfurization

  • Open Access

    ARTICLE

    Rapid Immobilization of Transferable Ni in Soil by Fe78Si9B13 Amorphous Zero-Valent Iron

    Liefei Pei, Xiangyun Zhang, Zizhou Yuan
    Journal of Renewable Materials, Vol.10, No.4, pp. 955-968, 2022, DOI:10.32604/jrm.2022.016961
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract Fe-Si-B amorphous zero-valent iron has attracted wide attention because of its efficient remediation of heavy metals and dye wastewater. In this paper, the remediation effect of amorphous zero-valent iron powder (Fe78Si9B13AP) on Ni contaminated soil was investigated. Results show that the immobilization efficiency of nickel in soil by Fe78Si9B13AP with low iron content is higher than that by ZVI. The apparent activation energies of the reactions of Fe78Si9B13AP with Ni2+ ions is 25.31 kJ/mol. After continuing the reaction for 7 days, Ni2+ ions is mainly transformed into monoplasmatic nickel (Ni0) and nickel combined with iron (hydroxide) oxides. Microstructure More >

  • Open Access

    REVIEW

    A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells

    Pooja Dange, Nishit Savla, Soumya Pandit, Rambabu Bobba, Sokhee P. Jung, Piyush Kumar Gupta, Mohit Sahni, Ram Prasad
    Journal of Renewable Materials, Vol.10, No.3, pp. 665-697, 2022, DOI:10.32604/jrm.2022.015806
    (This article belongs to the Special Issue: New Insights on Nanomaterials for Energy, Environmental and Agricultural Applications)
    Abstract The focus of microbial fuel cell research in recent years has been on the development of materials, microbes, and transfer of charges in the system, resulting in a substantial improvement in current density and improved power generation. The cathode is generally recognized as the limiting factor due to its high-distance proton transfer, slow oxygen reduction reaction (ORR), and expensive materials. The heterogeneous reaction determines power generation in MFC. This comprehensive review describes-recent advancements in the development of cathode materials and catalysts associated with ORR. The recent studies indicated the utilization of different metal oxides, the… More >

Share Link