Guest Editors
Milan Šernek, Professor, University of Ljubljana, Slovenia.
Milan Šernek is a full professor at the Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia, where he teaches courses on adhesives and wood bonding, wood-based composites, and technological process design. He received his PhD at Virginia Tech, USA, with the thesis on bonding of inactivated wood surfaces. His research work focuses on wood adhesives, bio-based adhesives, bonding performance, curing kinetics of adhesives, bonding of modified wood and wood-based composites. He has published more than 200 peer-reviewed articles, books, book chapters, patents, and conference papers and supervised seven doctoral dissertations. He serves as an associate editor and member of the editorial board of several scientific journals.
Summary
Renewable resources can partially or completely replace petroleum-based polymers by developing bio-based polymers. In recent years, bio-based adhesives derived from natural sources are also gaining much interest in the wood industry due to the environmental concerns related to synthetic adhesives. The development of a new adhesive formulation and its successful application requires a characterization of the curing process that allows the determination of the optimal pressing parameters, which are essential from an economic point of view and in terms of bonding performances.
The curing process of adhesives can be monitored by various methods. The mechanical properties of the adhesive during curing can be studied using thermomechanical analysis (TMA), dynamic mechanical analysis (DMA), torsional braid analysis (TBA), integrated pressing and testing system (IPATES) and automated bonding evaluation system (ABES), etc. The cure characterization of adhesives can also be predicted by measuring other parameters using infrared/Fourier transform infrared spectroscopy (IR and FTIR), nuclear magnetic resonance (NMR), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and dielectric analysis (DEA), etc.
This Special Issue, Characterization of the curing of bio-based adhesives, seeks high quality contributions and topics related to the hardening/curing of bio-based adhesives and characterization of curing of bio-based adhesives using various methods and novel approaches. In particular, scientific contributions on bio-based adhesives for bonding wood and wood-based materials, but also for other applications, are expected.
Keywords
Bio-based adhesives, curing, curing kinetics, curing characterization methods, hardening, renewable materials, wood
Published Papers