Open Access iconOpen Access

ARTICLE

crossmark

An α-Fe2O3/Circulating Fluidized Bed Fly Ash Based Geopolymer Composite Anode for Electrocatalytic Degradation of Indigo Carmine Dye Wastewater

Jiaqian Lei, Yaojun Zhang*, Panyang He

College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China

* Corresponding Author: Yaojun Zhang. Email: email

(This article belongs to this Special Issue: Current Advances in Green Nanomaterials Applications)

Journal of Renewable Materials 2021, 9(12), 2277-2289. https://doi.org/10.32604/jrm.2021.015824

Abstract

Geopolymers have been developed to various catalysts due to their advantages. However, low conductivity restricts their application in the electrocatalysis field. In this study, an α-Fe2O3/circulating fluidized bed fly ash based geopolymer (CFAG) composite anode was fabricated using a facile dip-coating method by loading α-Fe2O3 in the matrix of CFAG. The effects of α-Fe2O3 content on the composition, surface morphology and electrochemical performance of α-Fe2O3/CFAG composite anode were investigated. The X-ray diffraction (XRD) and scanning electron microscope (SEM) results demonstrated that α-Fe2O3 was successfully inlaid with the surface of amorphous CFAG matrix. The electrochemical measurements indicated that α-Fe2O3/CFAG composite anode had higher oxygen evolution potential, greater electrochemical activity area, and smaller electrochemical impedance than CFAG. The as-prepared composite anode was applied for electrocatalytic degradation of indigo carmine dye wastewater. It was discovered that the highest degradation efficiency over 10α-Fe2O3/CFAG reached up 92.6%, and the degradation of indigo carmine followed pseudo-first-order kinetics. Furthermore, 10α-Fe2O3/ CFAG composite anode presented excellent stability after five cycles. The active hydroxyl radical was generated over the α-Fe2O3/CFAG composite anode, which acted as strong oxidizing agents in the electrocatalytic degradation process.

Graphical Abstract

An α-Fe<sub>2</sub>O<sub>3</sub>/Circulating Fluidized Bed Fly Ash Based Geopolymer Composite Anode for Electrocatalytic Degradation of Indigo Carmine Dye Wastewater

Keywords


Cite This Article

Lei, J., Zhang, Y., He, P. (2021). An α-Fe2O3/Circulating Fluidized Bed Fly Ash Based Geopolymer Composite Anode for Electrocatalytic Degradation of Indigo Carmine Dye Wastewater. Journal of Renewable Materials, 9(12), 2277–2289. https://doi.org/10.32604/jrm.2021.015824

Citations




cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2856

    View

  • 1538

    Download

  • 0

    Like

Share Link