Home / Journals / JRM / Online First
Special Issues
Table of Content
  • Open Access

    REVIEW

    Nanocellulose-Based Adhesives for Sustainable Wood-Polymer Composites: Recent Advancement and Future Perspective

    Amelia Hariry1, Efri Mardawati1,2,*, Apri Heri Iswanto3, Tati Karliati4, Lukmanul Hakim Zaini5,6,*, Muhammad Adly Rahandi Lubis2,7
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058359
    Abstract Nanocellulose-based adhesives are gaining attention as a viable alternative to conventional adhesives, offering benefits such as cost-effectiveness and scalability, which make them suitable for various sectors, including cosmetics, pharmaceuticals, biodegradable products, and as reinforcing agents in natural adhesives. This review delves into the current advancements in nanocellulose-based adhesive solutions for sustainable and eco-friendly wood composites, using systematic review methods and bibliometric analysis. Data were collected from the Scopus database, spanning from 2007 to 2024, and visualized using VOSviewer to highlight emerging trends in the field. The analysis revealed that nanocellulose shows great potential as a More >

  • Open Access

    REVIEW

    Research Progress of Nanotechnology on Efficient and Green Technologies for Wood Preservation: A Review

    Yuxin He1,#, Yixin Li2,#, Qiaoguang Li1, Wenqing Xiao1,*, Guijun Xie2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058349
    (This article belongs to the Special Issue: Modification and Functionalization of Wood)
    Abstract Wood, recognized as a renewable and environmentally sustainable material, plays a crucial role as an alternative energy resource within the construction industry. However, it is highly susceptible to mold and decay fungi, which can lead to surface discoloration and potentially compromise the structural integrity of wood. The advancement of nanotechnology has introduced innovative strategies for wood protection, enhancing its performance while imparting additional properties. Various approaches including nanosized metals, polymer nanocomposite and coating treatments are actively being explored in this field. Furthermore, integrating bio-based materials with nanotechnology offers a green and sustainable method for wood More >

  • Open Access

    ARTICLE

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl2O4:Eu,Dy Phosphor

    Vitalii Chornii1,2,*, Serhii G. Nedilko1, Maxim Lazarenko1, Oleksandr Alekseev1, Mariia Sosnovs’ka1, Valerii Barbash3, Olga Yashchenko3, Syed Shabhi Haider4, Yaroslav Zhydachevskyy4, Andrzej Suchocki4
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058211
    Abstract The work deals with cellulose paper filled with nanocellulose and SrAl2O4:Eu,Dy oxide phosphor. It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained. The samples with the oxide demonstrate a long-lasting photoluminescence (PL) under sunlight and ultra-violet (UV) illumination. Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions. The short-wavelength part of the band is ascribed to the cellulose-related luminescence, while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl2O4:Eu,Dy phosphor. The dependency of the PL… More >

  • Open Access

    REVIEW

    Recent Developments in Bioadhesives and Binders

    Hong Lei1, Xiaojian Zhou2, Antonio Pizzi3,*, Guanben Du2,*, Xuedong Xi2
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0048
    (This article belongs to the Special Issue: Renewable and Biosourced Adhesives-2023)
    Abstract This review is composed of three main parts each of which is written by well-known top specialists that have been, in a way or other, also the main participants of the majority of the developments reported. Thus, after a general part covering the grand lines and more in-depth views of more recent tannin, lignin, carbohydrate and soy bioadhesives, some mix of the other bio raw materials with soy protein and soy flour and some other differently sourced bioadhesives for wood, this review presents a more in-depth part on starch-based wood adhesives and a more in-depth… More >
    Graphic Abstract

    Recent Developments in Bioadhesives and Binders

  • Open Access

    ARTICLE

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

    Flávia Naves Ferreira do Prado1, Michelle Garcia Gomes1, Marcela Piassi Bernardo1, Daniel Pasquini1,*, Anízio Márcio de Faria2, Luís Carlos de Morais3,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0014
    Abstract Alternative methods for biodiesel purification that focus on ease of operation, cost reduction, and elimination of contaminated residues or that are easier to treat have received more attention. The dry wash route was used as an alternative to the wet route in biodiesel production. Filter membranes were developed based on cellulose nanofibers as the matrix and sugarcane bagasse fibers or soy hulls, as reinforcement to the matrix, before and after two chemical treatments (carboxymethylation and regeneration with sulfuric acid). The filters were characterized by permeability capacity, morphology, wettability, porosity, SEM and mechanical properties. The filtered… More >

  • Open Access

    REVIEW

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (Piptadeniastrum africanum) in Cameroon

    John Nwoanjia1, Jean Jalin Eyinga Biwôlé1,2,*, Joseph Zobo Mfomo1, Evariste Fedoung Fongnzossie1, Antonio Pizzi2, Salomé Ndjakomo Essiane3, Achille Bernard Biwole1
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.02024-0005
    Abstract This review aims to identify the assets and limitations of Dabema (Piptadeniastrum africanum) as a sustainable alternative to traditional timber species for furniture and construction applications. Dabema is characterized by its high density and dimensional stability, meeting ASTM (American Society for Testing and Materials) standards for mechanical strength, which is essential for promoting its use. However, its limited availability in trade and ingrained habits of use are obstacles to its widespread commercialization. In addition, thermal and oleothermal treatments have shown great potential for improving the characteristics of this wood, although they require ongoing optimization and rigorous More >
    Graphic Abstract

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (<i>Piptadeniastrum africanum</i>) in Cameroon

  • Open Access

    REVIEW

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

    Abiodun Abdulhameed Amusa1,*, Anwar Johari1, Kamil Kayode Katibi2,3, Ibrahim Garba Shitu4,5, Abdulrahman Oyekanmi Adeleke6, Mohd Fairus Mohd Yasin7, Muhammad Thalhah Zainal8
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.057487
    (This article belongs to the Special Issue: Biodegradable Polymer and Biomass Composites)
    Abstract The increasing severity of air pollution necessitates more effective and sustained air filtration technology. Concurrently, the desire for more environmentally friendly, sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes. This review presents lignocellulosic biocomposite (LigBioComp) membranes as an alternative to traditional synthetic membranes. It focuses on their materials, fabrication, and functionalization techniques while exploring challenges and proposing methods for resourceful utilization. Renowned for their abundance and renewable nature, lignocellulosic materials consist of cellulose, hemicellulose, and lignin. Various applications can benefit from their antibacterial properties, large… More >
    Graphic Abstract

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

  • Open Access

    REVIEW

    Techno-Functional Properties and Potential Applications of Peptides from Agro-Industrial Residues

    Chaichawin Chavapradit1, Wonnop Visessanguan2, Suwan Panjanapongchai1, Anil Kumar Anal1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2025.058857
    (This article belongs to the Special Issue: Recent Advances on Renewable Materials)
    Abstract The growing population and industrialization have led to significant production in agro-industrial sectors, resulting in large amounts of agro-industrial residues often left untreated, posing potential environmental issues. Therefore, finding effective ways to utilize these bio-based residues is crucial. One promising approach is to use these low- or no-value agro-industrial wastes as raw materials for producing renewable biomaterials, including proteins and peptides. Research has extensively explored peptide extraction using plant and animal-based agro-industrial residue. Due to lower processing costs and beneficial bioactive properties, peptides derived from waste could replace synthetic peptides and those extracted from food More >

  • Open Access

    ARTICLE

    Physical and Mechanical Properties of Gmelina Wood (Gmelina arborea Roxb.) Modified with Furfuryl Alcohol-Tannin

    Mahdi Mubarok1,*, Pirda Maharani Nafisah1, Adi Santoso2, Saefudin2,*, Efrida Basri2, Yusuf Sudo Hadi1,3, Adik Bahanawan2, Rohmah Pari2, Imam Busyra Abdillah1, Jingjing Liao4, Dede Hermawan1, Trisna Priadi1, Philippe Gérardin5, Wayan Darmawan1
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.057476
    Abstract Furfurylation, a renowned chemical modification technique, uses furfuryl alcohol to enhance the properties of wood. This technology can be further refined by incorporating renewable tannins, which promote cross-linking with furfuryl alcohol. This study investigates the effects of furfurylation and tannin-modified furfurylation on the physical and mechanical properties of tropical Gmelina wood (Gmelina arborea Roxb.). Experiments involved impregnating Gmelina wood with aqueous solutions of furfuryl alcohol (FA) at 40% and 70% concentrations, as well as FA-tannin combinations (FA 40%-TA and FA 70%-TA), followed by polymerization at 103°C. The results demonstrated that both FA and FA-tannin treatments… More >

  • Open Access

    REVIEW

    The Evolution and Environmental Prospects of Renewable Bioplastics: Types, Production Methods, and Sustainability

    Farah Syazwani Shahar1, Thinesh Sharma Balakrishnan2, Mohamed Thariq Hameed Sultan2,3,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.02024-0011
    Abstract In this comprehensive review, the evolution and progress of bioplastics are examined, with an emphasis on their types, production methods, environmental impact, and biodegradability. In light of the increasing global efforts to address environmental degradation, bioplastics have emerged as a highly potential substitute for conventional petroleum-based plastics. This review classifies various categories of bioplastics, encompassing both biodegradable and bio-based variations, and assesses their environmental consequences using life cycle evaluations and biodegradability calculations. This paper analyzes the technological advancements that have enhanced the mechanical and thermal characteristics of bioplastics, hence increasing their feasibility for extensive commercial… More >
    Graphic Abstract

    The Evolution and Environmental Prospects of Renewable Bioplastics: Types, Production Methods, and Sustainability

  • Open Access

    ARTICLE

    Effect of Homogenization Rates on the Properties and Stability of Fish Gelatin Films with Cinnamon Essential Oil

    See Cheng Lee1, Han Lyn Foong1, Nur Hanani Z. A.1,2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.02024-0006
    Abstract Fish gelatin films have emerged as eco-friendly packaging materials due to their biodegradability and excellent film-forming properties. This study investigated the effects of varying homogenization rates (0, 6500, 9500, 13,500, 17,500, and 21,500 rpm) on the functional and structural properties of fish gelatin films enriched with cinnamon essential oil (CEO). Homogenization reduced droplet sizes and narrowed droplet size distributions in the film-forming emulsion (FFE). At a homogenization rate of 9500 rpm, the films exhibited excellent mechanical extensibility, reduced surface irregularities, and enhanced smoothness. The highest (p < 0.05) tensile strength and elongation at break were observed… More >
    Graphic Abstract

    Effect of Homogenization Rates on the Properties and Stability of Fish Gelatin Films with Cinnamon Essential Oil

  • Open Access

    ARTICLE

    From Waste to Biopolymer: Synthesis of P(3HB-co-4HB) from Renewable Fish Oil

    Tatiana Volova1,2, Natalia Zhila1,2,*, Kristina Sapozhnikova1,2, Olga Menshikova1,2, Evgeniy Kiselev1,2, Alexey Sukovatyi1,2, Vladimir Volkov3, Ivan Peterson4, Natalia Ipatova1,2, Ekaterina Shishatskaya1,2
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.058775
    Abstract The article presents the results of a study on the possibility of synthesizing biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from renewable waste fish oil (WFO) by the Cupriavidus necator B-10646 bacterium. For the first time, waste oil generated during the processing of Sprattus balticus in the production of sprats was used as the main carbon substrate for the synthesis of P(3HB-co-4HB), and ε-caprolactone was used as a precursor instead of the more expensive γ-butyrolactone. Samples of P(3HB-co-4HB) with a 4HB monomer content from 7.4 to 11.6 mol.% were synthesized, and values of the bacterial biomass yield and the total yield of the… More >
    Graphic Abstract

    From Waste to Biopolymer: Synthesis of P(3HB-<i>co</i>-4HB) from Renewable Fish Oil

  • Open Access

    ARTICLE

    Innovative Bioplastics: Harnessing Microalgae and Low-Density Polyethylene for Sustainable Production

    Sayeda M. Abdo1,*, Mehrez E. El-Naggar2, Islam El Nagar3, Samar A. El-Mekkawi4, Youssef A. M.3,5
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.057736
    Abstract The accumulation of non-biodegradable plastic debris in the environment raises serious concerns about potential long-term effects on the environment, the economy, and waste management. To assess the feasibility of substituting commercial plastics for a biodegradable renewable polymer for many applications, low-density polyethylene (LDPE) was mixed with varying concentrations of algal biomass (AB). Algae are considered a clean, renewable energy source because they don’t harm the environment and can be used to create bioplastics. Algal biomass grown in a high rate algal pond (HRAP) used for wastewater treatment used at 12.5–50 weight percent. Mechanical, thermal, and… More >
    Graphic Abstract

    Innovative Bioplastics: Harnessing Microalgae and Low-Density Polyethylene for Sustainable Production

  • Open Access

    ARTICLE

    Exploring the Potential of Locally Sourced Fungal Chitosan for Paper Mechanical Property Enhancement

    Ulla Milbreta1,2, Laura Andze1, Juris Zoldners1, Ilze Irbe1, Marite Skute1, Inese Filipova1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.057663
    Abstract This study investigated the potential of locally sourced mushrooms as a sustainable alternative to marine-derived chitosan in papermaking. Chitosan was extracted from four local (Boletus edulis, Suillus luteus, Leccinum aurantiacum, Suillus variegatus), one commercially available (Agaricus bisporus) and one laboratory-grown (Phanerochaete chrysosporium) fungal species. Paper handsheets were prepared using either 100% regenerated paper or a 50/50 blend of regenerated paper and hemp fibres. 2.5% chitosan (based on dry mass) was incorporated into the paper mass, using chitosan sourced from B. edulis, A. bisporus, P. chrysosporium, and crustacean chitosan. Fungal chitosan sources were selected based on multiple factors. B. edulis exhibited the highest chitosan yield… More >

  • Open Access

    ARTICLE

    Preparation of Flaxseed Meal Protein Renewable Bioadhesive by Using Small Proportions of Trimethylolpropane Trigglycidyl Ether and Ethylenediamine

    Chenglong Zhong1, Xianfeng Hou1,*, Shuai Peng1, Zhenzhong Gao1, Qiaofang Zhou1, Shijing Yan2
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049534
    Abstract The main raw material utilized in wood adhesives comes from petrochemical extractives. However, due to the excessive dependence on petrochemical resources and the adverse impact on the ecosystem and human well-being, there is an increasing trend to develop byproduct protein-based adhesives in the current global food safety context. In this research, flaxseed meal was subjected to pretreatment, and trimethylolpropane triglycidyl ether (TTE) and ethylenediamine (EN) were utilized as crosslinkers to establish a more compact adhesive layer and to prevent water intrusion. The pretreatment decreased the FM/UB viscosity by 60% compared to FM. The combination of… More >
    Graphic Abstract

    Preparation of Flaxseed Meal Protein Renewable Bioadhesive by Using Small Proportions of Trimethylolpropane Trigglycidyl Ether and Ethylenediamine

  • Open Access

    ARTICLE

    Graphene Oxide and Moringa oleifera Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

    María Fernanda Cardona Lunar1, Ramón Ordoñez2, Heidi Fonseca Florido3, Joaquín Hernández-Fernández4,5,6, Rodrigo Ortega-Toro1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.056639
    Abstract The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives. This study investigates the incorporation of graphene oxide (GO) and Moringa oleifera seed oil (MOSO) into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials. The properties of these films were evaluated using structural, thermal, mechanical, optical, and physicochemical methods to determine their suitability for food packaging applications. The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix, forming colloidal particles (around 5 µm in diameter). The addition of… More >
    Graphic Abstract

    Graphene Oxide and <i>Moringa oleifera</i> Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

  • Open Access

    ARTICLE

    Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids

    Prabu Satria Sejati1,2, Adrien Magne1, Luke Froment1, Jennifer Afrim1, Alexandre Maenhaut3, Julie Maillet3, Firmin Obounou Akong1,*, Frédéric Fradet3, Philippe Gérardin1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.056813
    (This article belongs to the Special Issue: Valorization of Lignocellulosic Biomass for Functional Materials)
    Abstract Bio-based thermoplastic film from flax fiber and fatty acid (FA) was obtained using trifluoroacetic anhydride (TFAA) as an impelling agent. Different quantities of TFAA/FA, size of flax fiber, and fatty acids were applied to investigate chemical structure in relation to the mechanical properties. Decreasing the quantity of TFAA/FA by almost half from 1:4 to 1:2.5 (flax to TFAA/FA) only reduces by 22% the weight percent gain (WPG) and ester content and reducing flax fiber size slightly increases the WPG and ester content. All the treatments showed significant chemical structure modification, observed by FTIR and solid… More >
    Graphic Abstract

    Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

    Sachin Ghalme1,*, Mohammad Hayat2, Mahesh Harne3
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.056275
    (This article belongs to the Special Issue: Renewable Materials and Advanced Technologies for Sustainability)
    Abstract With growing concerns for global warming and environmental issues, the research community has contributed significantly to green technology in the area of material science through the development of natural fiber-reinforced polymer composites (NFRPC). Polymers serve as the matrix in NFRPC, while natural fibers serve as the reinforcing materials. Demand for high-performing materials made with natural resources is growing continuously. Natural fiber-reinforced polymer composites are sustainable biocomposites fabricated with natural fibers embedded with a polymer matrix. They offer a wide range of advantages, including a low weight-to-strength ratio, high flexural strength, damping properties, and resistance to… More >
    Graphic Abstract

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

  • Open Access

    ARTICLE

    Polymer Resins Synthesized via the Michael 1,4-addition from Tall Oil Fatty Acids Using Various Epoxidation Techniques

    Aiga Ivdre*, Ralfs Pomilovskis, Arnis Abolins
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.056820
    (This article belongs to the Special Issue: Advances in Biorefinery Technologies and Products – 2024)
    Abstract Studies on the use of renewable materials for various applications, including polymers, have gained momentum due to global climate change and the push towards a circular economy. In this study, polymer resins were developed through Michael 1,4-addition. The precursors were synthesized from tall oil-based acetoacetates derived from epoxidized tall oil fatty acids or their methyl esters. Two different epoxidation methods were employed: enzymatic epoxidation of tall oil fatty acids and ion-exchange resin epoxidation of tall oil fatty acid methyl esters. Following oxirane opening and transesterification with trimethylolpropane, further esterification or transesterification was carried out to… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Rubber Composites: Properties, Compounding Aspects, and Renewable Practices with Natural Fibre Reinforcement

    Mohamad Firdaus Omar1, Fathilah Ali1,*, Mohammed Saedi Jami1, Azlin Suhaida Azmi1, Farah Ahmad1, Mohd Zahid Marzuki2, Shantha Kumari Muniyandi3, Zuraidah Zainudin4, Minsoo P. Kim5
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.057248
    (This article belongs to the Special Issue: Recent Advances on Renewable Materials)
    Abstract This review provides a comprehensive overview of natural rubber (NR) composites, focusing on their properties, compounding aspects, and renewable practices involving natural fibre reinforcement. The properties of NR are influenced by the compounding process, which incorporates ingredients such as elastomers, vulcanizing agents, accelerators, activators, and fillers like carbon black and silica. While effective in enhancing properties, these fillers lack biodegradability, prompting the exploration of sustainable alternatives. The potential of natural fibres as renewable reinforcements in NR composites is thoroughly covered in this review, highlighting both their advantages, such as improved sustainability, and the challenges they More >
    Graphic Abstract

    A Comprehensive Review of Natural Rubber Composites: Properties, Compounding Aspects, and Renewable Practices with Natural Fibre Reinforcement

  • Open Access

    ARTICLE

    Microwave-Assisted Acetylated Lignin Loaded into Cellulose Acetate for Efficient UV-Shielding Films

    Ahmed M. Khalil1, Samir Kamel2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.057419
    Abstract Developing favorable bio-based polymers that replace petroleum-based plastics is an essential environmental demand. Lignin is a by-product of the chemical pulping industry. It is a natural UV protection ingredient in broad-spectrum (UVA and UVB) sunscreens. It could be partially and selectively acetylated in a simple, fast, and more reliable process. In this work, a composite film was prepared with UV-resistant properties through a casting method. Bio-based cellulose acetate (CA) was employed as a major matrix while nano-acetylated kraft lignin (AL-NPs) was used as filler during synthesizing UV-shielding films loaded with various amounts (1–5 wt.%) of… More >
    Graphic Abstract

    Microwave-Assisted Acetylated Lignin Loaded into Cellulose Acetate for Efficient UV-Shielding Films

  • Open Access

    ARTICLE

    Alkaline Treatment of Straw for Composite Material Production and Its Impact on Water Vapor Adsorption Characteristics

    Martin Böhm*, Miloš Jerman, Martin Keppert, Klára Kobetičová, Dana Koňáková, Milena Pavlíková, Robert Černý
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.056984
    Abstract The effect of using 2% and 10% sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity (RH) range of 0% to 98%. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR) are used to investigate the morphological, chemical and structural changes of the treated straw surface. The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction (XRD). The application of sodium hydroxide solution results in the disruption of the straw surface. As the concentration More >
    Graphic Abstract

    Alkaline Treatment of Straw for Composite Material Production and Its Impact on Water Vapor Adsorption Characteristics

  • Open Access

    ARTICLE

    Environmentally Friendly Tannic Acid-Furfuryl Alcohol-Soybean Isolate/Casein Composite Foams Reinforced with Wood Fibers

    Jinxing Li1, Mustafa Zor2, Xiaojian Zhou3, Guanben Du3, Denis Rodrigue4, Xiaodong (Alice) Wang1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.056795
    Abstract In this study, two series of foams based on tannic acid (TA), furfuryl alcohol (FA), soybean protein isolate (SPI), and casein (CA), namely TA–FA–SPI (TS series) and TA–FA–CA (TC series) were developed, and their properties were enhanced by adding poplar fibers (WF). From the samples produced, a complete set of characterization was performed including possible crosslinking reactions, morphology, mechanical properties, flame retardancy, thermal insulation and thermal stability. Fourier-transform infrared spectroscopy (FTIR) revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix. Viscosity results indicated that lower prepolymer viscosity led to… More >

  • Open Access

    ARTICLE

    Enhancing the Properties of Biodegradable Food Packaging Films Derived from Agar and Porang-Glucomannan (Amorphophallus oncophyllus) Blends

    Toni Dwi Novianto1,2, Sri Rahayoe1,*, Bakti Berlyanto Sedayu2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.057313
    (This article belongs to the Special Issue: Polysaccharide-Based Composites: Preparation, Characterization, and Applications )
    Abstract This study aimed to develop and characterize biodegradable packaging film from blends of two natural polysaccharides, i.e., agar and glucomannan. The glucomannan used was derived from the specific tuber plant Amorphophallus oncophyllus (locally known as “porang”), which grows abundantly in Indonesian forests and remains underutilized. Various ratios of agar and porang-glucomannan (PG) proportions were formulated to produce a food packaging film, which was subsequently tested for its mechanical, physical, chemical, and thermal properties. The results showed that the inclusion of PG to the film formulations notably enhanced the stretchability of agar films, achieving maximum a… More >
    Graphic Abstract

    Enhancing the Properties of Biodegradable Food Packaging Films Derived from Agar and Porang-Glucomannan (<i>Amorphophallus oncophyllus</i>) Blends