Home / Journals / JQC / Vol.5, No.1, 2023
  • Open AccessOpen Access

    ARTICLE

    A Protocol for Conversion of Path-Spin to Spin-Spin Quantum Entanglement

    Indranil Bayal1, Pradipta Panchadhyayee1,2,*
    Journal of Quantum Computing, Vol.5, pp. 71-79, 2023, DOI:10.32604/jqc.2023.045164 - 14 December 2023
    Abstract The present model deals with a protocol which involves the generation and conversion of entanglement from path-spin (P-S) hybrid entanglement associated with half-spin particle to spin-spin (S-S) interparticle entanglement. This protocol finds its applications in quantum information processing via a series of operations which include a beam splitter, spin flipper, spin measurement, classical channel, unitary transformations. Finally, it leads to two particles having completely entangled spin variables, without any requirement of any simultaneous operation on the two particles. More >

  • Open AccessOpen Access

    ARTICLE

    Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle Problem

    Giuseppe Corrente1,2,*, Carlo Vincenzo Stanzione3,4, Vittoria Stanzione5
    Journal of Quantum Computing, Vol.5, pp. 55-70, 2023, DOI:10.32604/jqc.2023.044786 - 14 December 2023
    Abstract The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several More >

  • Open AccessOpen Access

    ARTICLE

    Effects of T-Factor on Quantum Annealing Algorithms for Integer Factoring Problem

    Zhiqi Liu1, Shihui Zheng1, Xingyu Yan1, Ping Pan1,2, Licheng Wang1,3,*
    Journal of Quantum Computing, Vol.5, pp. 41-54, 2023, DOI:10.32604/jqc.2023.045572 - 12 December 2023
    Abstract The hardness of the integer factoring problem (IFP) plays a core role in the security of RSA-like cryptosystems that are widely used today. Besides Shor’s quantum algorithm that can solve IFP within polynomial time, quantum annealing algorithms (QAA) also manifest certain advantages in factoring integers. In experimental aspects, the reported integers that were successfully factored by using the D-wave QAA platform are much larger than those being factored by using Shor-like quantum algorithms. In this paper, we report some interesting observations about the effects of QAA for solving IFP. More specifically, we introduce a metric, More >

  • Open AccessOpen Access

    ARTICLE

    Design and Implementation of Quantum Repeaters: Insights on Quantum Entanglement Purification

    Karoki A. Mũgambi*, Geoffrey O. Okeng’o
    Journal of Quantum Computing, Vol.5, pp. 25-40, 2023, DOI:10.32604/jqc.2023.045654 - 12 December 2023
    Abstract Quantum communication is a groundbreaking technology that is driving the future of information transmission and communication technologies to a new paradigm. It relies on quantum entanglement to facilitate the transmission of quantum states between parties. Quantum repeaters are crucial for facilitating long-distance quantum communication. These quantum devices act as intermediaries between adjacent communication channel segments within a fragmented quantum network, allowing for entanglement swapping between the channel segments. This entanglement swapping process establishes entanglement links between the endpoints of adjacent segments, gradually creating a continuous entanglement connection over the entire length of the transmission channel. More >

  • Open AccessOpen Access

    ARTICLE

    On Factorization of N-Qubit Pure States and Complete Entanglement Analysis of 3-Qubit Pure States Containing Exactly Two Terms and Three Terms

    Dhananjay P. Mehendale1,*, Madhav R. Modak2
    Journal of Quantum Computing, Vol.5, pp. 15-24, 2023, DOI:10.32604/jqc.2023.043370 - 05 December 2023
    Abstract A multi-qubit pure quantum state is called separable when it can be factored as the tensor product of 1-qubit pure quantum states. Factorizing a general multi-qubit pure quantum state into the tensor product of its factors (pure states containing a smaller number of qubits) can be a challenging task, especially for highly entangled states. A new criterion based on the proportionality of the rows of certain associated matrices for the existence of certain factorization and a factorization algorithm that follows from this criterion for systematically extracting all the factors is developed in this paper. 3-qubit More >

  • Open AccessOpen Access

    ARTICLE

    Pancreatic Cancer Data Classification with Quantum Machine Learning

    Amit Saxena1, Smita Saxena2,*
    Journal of Quantum Computing, Vol.5, pp. 1-13, 2023, DOI:10.32604/jqc.2023.044555 - 09 November 2023
    Abstract Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles. The inherent parallelism and exponential computational power of quantum systems hold the potential to outpace classical counterparts in solving complex optimization problems, which are pervasive in machine learning. Quantum Support Vector Machine (QSVM) is a quantum machine learning algorithm inspired by classical Support Vector Machine (SVM) that exploits quantum parallelism to efficiently classify data points in high-dimensional feature spaces. We provide a comprehensive overview of the underlying principles of QSVM, elucidating how different… More >

Per Page:

Share Link