JRMOpen Access

Journal of Renewable Materials

ISSN:2164-6325(print)
ISSN:2164-6341(online)
Publication Frequency:Monthly

  • Online
    Articles

    1230

  • on board
    editors

    95

Special Issues
Table of Content


About the Journal

The Journal of Renewable Materials (JRM) is an interdisciplinary journal publishing original research covering all aspects of renewable materials, namely bio-based materials, sustainable materials, green chemistry and including recycling and recovery of spent materials. The scope of the journal is devoted to reports of new and original experimental and theoretical research in the areas of materials, engineering, physics, bioscience, processing, environmental science and chemistry, which are related to renewable materials and their applications.

Read More

Indexing and Abstracting

Ei Compendex/Engineering Village (Elsevier); Scopus Citescore (Impact per Publication 2023): 4.1; Citescore Ranking: Environmental Science (miscellaneous): 55/163 (Q2); Materials Science (miscellaneous): 59/150 (Q2); SNIP (Source Normalized Impact per Paper 2023): 0.613; Google Scholar h5-index 31, ranking 5 in Wood Science &Technology; Chemical Abstracting Services; Polymer Library; AGRICOLA; Meta; Baidu Xueshu (China); Portico, etc...
Notice: Please make new submissions of JRM to the new system (ScholarOne) (https://mc03.manuscriptcentral.com/jrenewmater) from 25 September 2024. To view your previous submissions, please access TSP system (https://ijs.tspsubmission.com/homepage).

  • Open Access

    REVIEW

    Recent Developments in Bioadhesives and Binders

    Journal of Renewable Materials, Vol.13, No.2, pp. 199-249, 2025, DOI:10.32604/jrm.2025.02024-0048 - 20 February 2025
    (This article belongs to the Special Issue: Renewable and Biosourced Adhesives-2023)
    Abstract This review is composed of three main parts each of which is written by well-known top specialists that have been, in a way or other, also the main participants of the majority of the developments reported. Thus, after a general part covering the grand lines and more in-depth views of more recent tannin, lignin, carbohydrate and soy bioadhesives, some mix of the other bio raw materials with soy protein and soy flour and some other differently sourced bioadhesives for wood, this review presents a more in-depth part on starch-based wood adhesives and a more in-depth… More >

    Graphic Abstract

    Recent Developments in Bioadhesives and Binders

  • Open Access

    REVIEW

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

    Journal of Renewable Materials, Vol.13, No.2, pp. 251-272, 2025, DOI:10.32604/jrm.2025.057487 - 20 February 2025
    (This article belongs to the Special Issue: Biodegradable Polymer and Biomass Composites)
    Abstract The increasing severity of air pollution necessitates more effective and sustained air filtration technology. Concurrently, the desire for more environmentally friendly, sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes. This review presents lignocellulosic biocomposite (LigBioComp) membranes as an alternative to traditional synthetic membranes. It focuses on their materials, fabrication, and functionalization techniques while exploring challenges and proposing methods for resourceful utilization. Renowned for their abundance and renewable nature, lignocellulosic materials consist of cellulose, hemicellulose, and lignin. Various applications can benefit from their antibacterial properties,… More >

    Graphic Abstract

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

    Journal of Renewable Materials, Vol.13, No.2, pp. 273-295, 2025, DOI:10.32604/jrm.2024.056275 - 20 February 2025
    (This article belongs to the Special Issue: Renewable Materials and Advanced Technologies for Sustainability)
    Abstract With growing concerns for global warming and environmental issues, the research community has contributed significantly to green technology in the area of material science through the development of natural fiber-reinforced polymer composites (NFRPC). Polymers serve as the matrix in NFRPC, while natural fibers serve as the reinforcing materials. Demand for high-performing materials made with natural resources is growing continuously. Natural fiber-reinforced polymer composites are sustainable biocomposites fabricated with natural fibers embedded with a polymer matrix. They offer a wide range of advantages, including a low weight-to-strength ratio, high flexural strength, damping properties, and resistance… More >

    Graphic Abstract

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

  • Open Access

    ARTICLE

    Preparation of Flaxseed Meal Protein Renewable Bioadhesive by Using Small Proportions of Trimethylolpropane Trigglycidyl Ether and Ethylenediamine

    Journal of Renewable Materials, Vol.13, No.2, pp. 297-310, 2025, DOI:10.32604/jrm.2024.049534 - 20 February 2025
    Abstract The main raw material utilized in wood adhesives comes from petrochemical extractives. However, due to the excessive dependence on petrochemical resources and the adverse impact on the ecosystem and human well-being, there is an increasing trend to develop byproduct protein-based adhesives in the current global food safety context. In this research, flaxseed meal was subjected to pretreatment, and trimethylolpropane triglycidyl ether (TTE) and ethylenediamine (EN) were utilized as crosslinkers to establish a more compact adhesive layer and to prevent water intrusion. The pretreatment decreased the FM/UB viscosity by 60% compared to FM. The combination… More >

    Graphic Abstract

    Preparation of Flaxseed Meal Protein Renewable Bioadhesive by Using Small Proportions of Trimethylolpropane Trigglycidyl Ether and Ethylenediamine

  • Open Access

    ARTICLE

    Graphene Oxide and Moringa oleifera Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

    Journal of Renewable Materials, Vol.13, No.2, pp. 311-327, 2025, DOI:10.32604/jrm.2024.056639 - 20 February 2025
    Abstract The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives. This study investigates the incorporation of graphene oxide (GO) and Moringa oleifera seed oil (MOSO) into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials. The properties of these films were evaluated using structural, thermal, mechanical, optical, and physicochemical methods to determine their suitability for food packaging applications. The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix, forming colloidal particles (around 5 µm in diameter). The addition… More >

    Graphic Abstract

    Graphene Oxide and <i>Moringa oleifera</i> Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

  • Open Access

    ARTICLE

    Environmentally Friendly Tannic Acid-Furfuryl Alcohol-Soybean Isolate/Casein Composite Foams Reinforced with Wood Fibers

    Journal of Renewable Materials, Vol.13, No.2, pp. 329-347, 2025, DOI:10.32604/jrm.2024.056795 - 20 February 2025
    Abstract In this study, two series of foams based on tannic acid (TA), furfuryl alcohol (FA), soybean protein isolate (SPI), and casein (CA), namely TA–FA–SPI (TS series) and TA–FA–CA (TC series) were developed, and their properties were enhanced by adding poplar fibers (WF). From the samples produced, a complete set of characterization was performed including possible crosslinking reactions, morphology, mechanical properties, flame retardancy, thermal insulation and thermal stability. Fourier-transform infrared spectroscopy (FTIR) revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix. Viscosity results indicated that lower prepolymer viscosity led to… More >

  • Open Access

    ARTICLE

    Polymer Resins Synthesized via the Michael 1,4-addition from Tall Oil Fatty Acids Using Various Epoxidation Techniques

    Journal of Renewable Materials, Vol.13, No.2, pp. 349-361, 2025, DOI:10.32604/jrm.2024.056820 - 20 February 2025
    (This article belongs to the Special Issue: Advances in Biorefinery Technologies and Products – 2024)
    Abstract Studies on the use of renewable materials for various applications, including polymers, have gained momentum due to global climate change and the push towards a circular economy. In this study, polymer resins were developed through Michael 1,4-addition. The precursors were synthesized from tall oil-based acetoacetates derived from epoxidized tall oil fatty acids or their methyl esters. Two different epoxidation methods were employed: enzymatic epoxidation of tall oil fatty acids and ion-exchange resin epoxidation of tall oil fatty acid methyl esters. Following oxirane opening and transesterification with trimethylolpropane, further esterification or transesterification was carried out to… More >

  • Open Access

    ARTICLE

    Alkaline Treatment of Straw for Composite Material Production and Its Impact on Water Vapor Adsorption Characteristics

    Journal of Renewable Materials, Vol.13, No.2, pp. 363-383, 2025, DOI:10.32604/jrm.2024.056984 - 20 February 2025
    Abstract The effect of using 2% and 10% sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity (RH) range of 0% to 98%. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR) are used to investigate the morphological, chemical and structural changes of the treated straw surface. The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction (XRD). The application of sodium hydroxide solution results in the disruption of the straw surface. As the concentration More >

    Graphic Abstract

    Alkaline Treatment of Straw for Composite Material Production and Its Impact on Water Vapor Adsorption Characteristics

  • Open Access

    ARTICLE

    Enhancing the Properties of Biodegradable Food Packaging Films Derived from Agar and Porang-Glucomannan (Amorphophallus oncophyllus) Blends

    Journal of Renewable Materials, Vol.13, No.2, pp. 385-400, 2025, DOI:10.32604/jrm.2024.057313 - 20 February 2025
    (This article belongs to the Special Issue: Polysaccharide-Based Composites: Preparation, Characterization, and Applications )
    Abstract This study aimed to develop and characterize biodegradable packaging film from blends of two natural polysaccharides, i.e., agar and glucomannan. The glucomannan used was derived from the specific tuber plant Amorphophallus oncophyllus (locally known as “porang”), which grows abundantly in Indonesian forests and remains underutilized. Various ratios of agar and porang-glucomannan (PG) proportions were formulated to produce a food packaging film, which was subsequently tested for its mechanical, physical, chemical, and thermal properties. The results showed that the inclusion of PG to the film formulations notably enhanced the stretchability of agar films, achieving maximum a… More >

    Graphic Abstract

    Enhancing the Properties of Biodegradable Food Packaging Films Derived from Agar and Porang-Glucomannan (<i>Amorphophallus oncophyllus</i>) Blends

  • Open Access

    ARTICLE

    Microwave-Assisted Acetylated Lignin Loaded into Cellulose Acetate for Efficient UV-Shielding Films

    Journal of Renewable Materials, Vol.13, No.2, pp. 401-412, 2025, DOI:10.32604/jrm.2024.057419 - 20 February 2025
    Abstract Developing favorable bio-based polymers that replace petroleum-based plastics is an essential environmental demand. Lignin is a by-product of the chemical pulping industry. It is a natural UV protection ingredient in broad-spectrum (UVA and UVB) sunscreens. It could be partially and selectively acetylated in a simple, fast, and more reliable process. In this work, a composite film was prepared with UV-resistant properties through a casting method. Bio-based cellulose acetate (CA) was employed as a major matrix while nano-acetylated kraft lignin (AL-NPs) was used as filler during synthesizing UV-shielding films loaded with various amounts (1–5 wt.%) of… More >

    Graphic Abstract

    Microwave-Assisted Acetylated Lignin Loaded into Cellulose Acetate for Efficient UV-Shielding Films

Copyright © 2025 The Author(s). Published by Tech Science Press.

Share Link