Fluid Dynamics and Materials Processing is an essential reading for all those concerned with complex fluids, multiphase flows and the intersection of fluid dynamics with materials processing and/or with the more general field of engineering optimization. It features original theoretical, computational, and experimental investigations. All subjects where a material, at a certain stage of its “life”, is in a fluid state, behaves as a fluid (e.g. many types of granular media) or interacts with a fluid should be considered relevant to FDMP. Relevant examples include (but are not limited to) the most modern and advanced processes for the production of inorganic (semiconductors, metal alloys, foams, plastics, polymers, ceramic materials, cement, asphalt and resins of various kinds), organic (protein crystals, drugs and medicines) materials and "living" (in vitro) biological tissues. We are especially interested in those studies where emphasis is put on the fluid-dynamic conditions under which a material is operated. However, FDMP also welcomes manuscripts dealing with more fundamental aspects such as the rheological behavior of multiphase systems or the convective currents that are produced in a fluid as a result of the thermal, chemical and/or mechanical stimuli typically applied in various processing or manufacturing methods (e.g. thermal gradients, shaking, mixing, etc). Some attention is devoted as well to all those problems of “structure/fluid” interaction that have extensive background applications in important fields such as marine, chemical, aeronautical and aerospace engineering and the oil sector, i.e. all those cases where fluid-dynamic analysis is instrumental in guiding the design/optimization of the considered systems (or related components) and the selection of the required “materials”.
Emerging Source Citation Index (Web of Science): 0.8; Scopus Citescore (Impact per Publication 2023): 1.6; SNIP (Source Normalized Impact per Paper 2023): 0.386; Engineering Index (Compendex); EBSCO; Google Scholar; Proquest; Portico, etc...
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 233-252, 2025, DOI:10.32604/fdmp.2025.056131 - 06 March 2025
Abstract This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic (MHD) dissipative and radiative fluid flow, incorporating an induced magnetic field (IMF) and considering a relatively high concentration of foreign mass (accounting for Soret and Dufour effects) over a vertically oriented semi-infinite plate. The governing equations were normalized using boundary layer (BL) approximations. The resulting nonlinear system of partial differential equations (PDEs) was discretized and solved using an efficient explicit finite difference method (FDM). Numerical simulations were conducted using MATLAB R2015a, and the developed numerical code was verified through comparison with another… More >
Open Access
EDITORIAL
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 253-260, 2025, DOI:10.32604/fdmp.2025.062122 - 06 March 2025
(This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
Abstract This article has no abstract. More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 261-277, 2025, DOI:10.32604/fdmp.2025.060033 - 06 March 2025
(This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources II)
Abstract Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields. However, the widespread use of epoxy resin is constrained by its high cost and non-renewable origin, while plant-based resins often suffer from inadequate mechanical properties, which limit their effectiveness in such applications. This study introduces BEOPA, an innovative, renewable, high-strength resin plugging agent derived from epoxidized soybean oil (ESO) and enhanced with bisphenol A-type benzoxazine (BZ). In this study, the synthesis process, reaction mechanism, and application performance of this novel material are systematically presented, explored and optimized. It is… More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 279-292, 2025, DOI:10.32604/fdmp.2025.060998 - 06 March 2025
Abstract Shale gas reservoirs typically contain numerous nanoscale pores, with pore size playing a significant role in influencing the gas behavior. To better understand the related mechanisms, this study employs the Gauge-GEMC molecular simulation method to systematically analyze the effects of various pore sizes (5, 10, 20, and 40 nm) on the phase behavior and dew point pressure of the shale gas reservoir components. The simulation results reveal that when pore sizes are smaller than 40 nm, the dew point pressure increases significantly as the pore size decreases. For instance, the dew point pressure in 5… More >
Graphic Abstract
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 293-308, 2025, DOI:10.32604/fdmp.2025.058989 - 06 March 2025
(This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources II)
Abstract
To address the water sensitivity of conglomerate reservoirs, a series of core sensitivity tests were conducted to evaluate the effects of varying ionic content. These findings serve as a foundation for improving reservoir fluid dynamics and optimizing the concentration of anti-swelling agents in water flooding operations. The experiments revealed a marked disparity in response between cores with differing permeabilities. In Core No. 5, characterized by low permeability, a 0.5% anti-swelling agent achieved only a modest 7.47% reduction in water sensitivity. Conversely, in the higher-permeability Core No. 8, a 5% anti-swelling agent significantly reduced the… More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 309-324, 2025, DOI:10.32604/fdmp.2024.058454 - 06 March 2025
(This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources II)
Abstract A precise diagnosis of the complex post-fracturing characteristics and parameter variations in tight gas reservoirs is essential for optimizing fracturing technology, enhancing treatment effectiveness, and assessing post-fracturing production capacity. Tight gas reservoirs face challenges due to the interaction between natural fractures and induced fractures. To address these issues, a theoretical model for diagnosing fractures under varying leak-off mechanisms has been developed, incorporating the closure behavior of natural fractures. This model, grounded in material balance theory, also accounts for shut-in pressure. The study derived and plotted typical G-function charts, which capture fracture behavior during closure. By More >
Graphic Abstract
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 325-349, 2025, DOI:10.32604/fdmp.2024.057496 - 06 March 2025
Abstract
In modern engineering, enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials. This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate (SDS) surfactant in saturated deionized water. Experiments were conducted at standard atmospheric pressure, with heat flux ranging from 20 to 100 kW/m2. The heating surface, positioned below the layer of freely moving copper beads, allowed the particle layer to shift due to liquid convection and steam More >
Graphic Abstract
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 351-370, 2025, DOI:10.32604/fdmp.2024.056292 - 06 March 2025
Abstract The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances. This study investigates experimentally the turbulent convective heat transfer characteristics of water-based nanofluids containing TiO2, CuO, and graphene nanoplatelet (GNP) nanoparticles as they flow through a copper tube. Both the dynamic viscosity and thermal conductivity of these nanofluids were modeled and experimentally measured across varying nanoparticle concentrations (0.01, 0.02, and 0.03 vol.%) and temperatures (25°C, 35°C, and 45°C). The findings indicate that the behavior of nanofluids depends on the parameter used for comparison with the base fluid. Notably, both More >
Graphic Abstract
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 371-385, 2025, DOI:10.32604/fdmp.2024.055519 - 06 March 2025
(This article belongs to the Special Issue: Computational Fluid Dynamics: Two- and Three-dimensional fluid flow analysis over a body using commercial software)
Abstract High-speed maglev trains (HSMTs) can run at high running speeds due to their unique design. The pressure waves that these trains generate while passing each other are therefore very intense, and can even have safety implications. In order to reduce the transient impact of such waves, the standard k-ε turbulence model is used in this work to assess the effect of railway spacing on the aerodynamic loads, pressure and surrounding flow field of 600 km/h maglev trains passing each other in open air. The sliding mesh technique is used to determine the relative motion between the More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 387-404, 2025, DOI:10.32604/fdmp.2024.055697 - 06 March 2025
(This article belongs to the Special Issue: Advances in Solid Waste Processing and Recycling Technologies for Civil Engineering Materials)
Abstract Styrene-butadiene-styrene (SBS) modified asphalt (SA) has long found effective applications in road construction materials. When combined with fillers, SBS-modified asphalt has demonstrated promising resistance to fatigue cracking caused by temperature fluctuations and aging. In this study, molybdenum disulfide (MoS2) and polyphosphoric acid (PPA) were ground in naphthenic oil (NO) and subjected to mechanical activation to create PPA-modified MoS2, referred to as OMS-PPA. By blending various ratios of OMS-PPA with SBS-modified asphalt, composite-modified asphalts were successfully developed to enhance their overall properties. To assess the mechanical characteristics and stability of these modified asphalts, various methods were employed,… More >
Graphic Abstract
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 405-426, 2025, DOI:10.32604/fdmp.2024.056396 - 06 March 2025
Abstract During the highly transient process of the direct-start in a four-cylinder GDI engine, each cylinder exhibits specific characteristics in terms of in-cylinder conditions and energy demands, necessitating different control for each cylinder. However, recent studies have paid insufficient attention to cylinders other than the first starting cylinder. This paper proposes a comprehensive control strategy based on experimental data from the direct-start process of the second, third, and fourth cylinders, aiming to enhance the characteristics of combustion and emission performance through the optimization of injection timing, equivalence ratio, and ignition timing. The research findings indicate that… More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 427-444, 2025, DOI:10.32604/fdmp.2024.052646 - 06 March 2025
Abstract Tight oil reservoirs face significant challenges, including rapid production decline, low recovery rates, and a lack of effective energy replenishment methods. In this study, a novel development model is proposed, based on inter-fracture injection following volumetric fracturing and relying on a high-temperature and high-pressure large-scale physical simulation system. Additionally, the CMG (Computer Modelling Group Ltd., Calgary City, Canada) software is also used to elucidate the impact of various single factors on the production of horizontal wells while filtering out the interference of others. The effects of fracture spacing, fracture half-length, and the injection-production ratio are… More >