FDMP-Fluid Dynamics & Materials Processing

About the Journal

The Journal is intended to cover some "frontier" aspects of materials science and, in particular, the most modern and advanced processes for the production of inorganic (semiconductors and metal alloys), organic (protein crystals) materials and "living" (in vitro) biological tissues, with emphasis on the fluid-dynamic conditions under which they are operated. The Journal focuses on the final properties of these materials as well as on fluid-mechanical aspects pertaining to the technological processes used to grow them. Some attention is devoted as well to all those problems of “structure/fluid” interaction that have extensive background applications in important fields such as marine, aeronautical and aerospace engineering.

Indexing and Abstracting

Emerging Source Citation Index (Web of Science) (ESCI 2016); Scopus Citescore (Impact per Publication 2020): 1.4; SNIP (Source Normalized Impact per Paper 2020): 1.163; Engineering Index (Compendex); Thomson Reuters (Clarivate Analytics) Master Journal List; Web of Science Core Collection; Applied Mechanics Reviews; Cambridge Scientific Abstracts: Aerospace and High Technology, Materials Sciences & Engineering, and Computer & Information Systems Abstracts Database; INSPEC Databases; Mechanics; Science Navigator; Zentralblatt fur Mathematik; Portico, etc...

  • Influence of Particle Size Distribution on the Optical Properties of Fine-Dispersed Suspensions
  • Abstract

    Nanofluids have great potential for solar energy harvesting due to their suitable optical and thermophysical properties. One of the promising applications of nanofluids is utilization in solar collectors with the direct absorption of light (DASC). The design of a DASC requires detailed knowledge of the optical properties of nanofluids, which can be significantly affected by the particle size distribution. The paper presents the method to take into account the particle size distribution when calculating nanofluid extinction spectra. To validate the proposed model, the particle size distribution and spectral absorbance were measured for aqueous suspension with multi-walled graphite nanotubes; the minimum… More

  •   Views:342       Downloads:336        Download PDF
  • Experimental Synthesis of Polyacrylic-Type Superabsorbent Polymer and Analysis of Its Internal Curing Performances
  • Abstract A solution polymerization method has been used to synthesize a polyacrylic-type superabsorbent polymer (SAP). The influence of various influential factors, such as the temperature, neutralization degree, cross-linking agent, and initiator, on the water absorption capacity of SAP has been investigated. The results show that the absorption can display a non-monotonic behavior depending on the synthesis conditions. The absorption can also change according to the pH, ion types and ion concentration. As the pH value increases, the water absorption capacity decreases significantly. It also decreases if the Na+ concentration becomes higher and becomes particularly low in solutions containing Mg2+. With the… More
  •   Views:222       Downloads:292        Download PDF
  • Analysis of the Stability and Mechanical Characteristics of the Jointed Surrounding Rock and Lining Structure of a Deeply Buried Hydraulic Tunnel
  • Abstract On-site monitoring and numerical simulation have been combined to analyze the stability of the jointed surrounding rock and the stress inside the lining structure of a sample deeply buried hydraulic tunnel. We show that the deformation around the tunnel was mainly concentrated in the range 51.37 mm∼66.73 mm, the tunnel circumference was dominated by shear failure, and the maximum plastic zone was about 3.90 m. When the shotcrete treatment was performed immediately after the excavation, the deformation of the surrounding rock was reduced by 58.94%∼76.31%, and the extension of the plastic zone was relatively limited, thereby leading to improvements in terms… More
  •   Views:231       Downloads:292        Download PDF
  • An Experimental and Numerical Study on the Cleaning of Pleated Bag Filters Using Low-Pressure Pulsed-Jets
  • Abstract Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates. In this study, non-woven needle felt filter bags with and without a film coating material have been analyzed considering different geometries (different number N of pairs of pleated filter bag sides) in the frame of dedicated low-pressure pulsed-jet cleaning experiments. The flow structure inside the bag and the response characteristics of its wall have also been analyzed numerically through a computational fluid-dynamics/structural-dynamics (CFD-CSD) unidirectional fluid-solid coupling method. As shown by the experiments, the peak pressure… More
  •   Views:139       Downloads:125        Download PDF
  • Thermal Analysis by Means of Differential Scanning Calorimetry of the Characteristic Thermodynamic Temperatures of a Cu-Zr-Al Bulk Metallic Glass
  • Abstract In this study a Cu43Zr48Al9 bulk metallic glass prepared by the copper mold casting method is considered. In recent years, Cu-Zr-Al systems like this have enjoyed widespread attention due to their high strength, high hardness, high corrosion resistance and low cost. Here samples of this substance are studied using DSC (Differential scanning calorimetry) to determine the effect of different test conditions (heating rate, sample mass, sample specific surface area and sample crystal phase) on the characteristic thermodynamic temperature of the bulk metallic glass. Experimental results show that almost all of the five characteristic thermodynamic temperatures (Tg, Tx, Tp, Tm, Tl)… More
  •   Views:146       Downloads:137        Download PDF
  • Experimental Study on Heavy Oil Drag Reduction in Horizontal Pipelines by Water Annular Conveying
  • Abstract Transportation of heavy oil by the so-called water-ring technique is a very promising method by which pressure drop and pollution can be significantly reduced. Dedicated experiments have been carried out by changing the phase’s density, viscosity, velocity and interfacial tension to systematically analyze the characteristics of the water ring. On the basis of such experimental data, a mathematical model for pressure drop prediction has been introduced. This research shows that as long as the density of oil and water remains the same, a concentric water ring can effectively be formed. In such conditions, the oil-water viscosity difference has little effect… More
  •   Views:145       Downloads:116        Download PDF
  • Influence of the Impeller/Guide Vane Clearance Ratio on the Performances of a Nuclear Reactor Coolant Pump
  • Abstract An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps. Experiments and numerical simulations relying on an unidirectional fluid-solid coupling approach are used to investigate the problem (stress, strain and mode of the rotor). The results reveal the relationship existing between the hydraulic performance of the nuclear reactor coolant pump and the clearance ratio. The effect of clearance ratio on the maximum equivalent stress on the back surface of the impeller blade is greater than that on the working surface (the maximum equivalent stress on… More
  •   Views:133       Downloads:116        Download PDF
  • The Effect of the Gap Ratio on the Flow and Heat Transfer over a Bluff Body in Near-Wall Conditions
  • Abstract In order to study the effect of different gap ratios on the thermofluid-dynamic field around a bluff body located in proximity to a heated wall, a series of experiments and numerical simulations have been conducted. The former were carried out using an open circulating water tank experimental platform and a single cylinder and square column as geometrical models (their characteristic length being D). The latter were based on the well-known SIMPLE algorithm for incompressible flow. The results show that the gap ratio is an important factor affecting the wake characteristics of near-wall bluff bodies. When the gap ratio is small,… More
  •   Views:247       Downloads:458        Download PDF
  • A Review of Test Methods for the Determination of the Permeability Coefficient of Gravelly Soils Used for Embankment Dams
  • Abstract The factors influencing the permeability coefficient of gravelly soils used for the development of embankment dams (core wall) are analyzed. Such factors include (but are not limited to) soil size, anisotropy, density and boundary effects. A review of the literature is conducted and new directions of research are proposed. In such a framework, it is shown that gravelly soil with controlled density and vertical stress should be used to optimize the measurement of the vertical and horizontal permeability coefficients, respectively. More
  •   Views:132       Downloads:112        Download PDF
  • A Critical Analysis of Natural Gas Liquefaction Technology
  • Abstract Liquefied natural gas (LNG) is an important energy source and occupies an important proportion in natural gas consumption, therefore, the selection of appropriate liquefaction processes and related optimization should be seen as subjects of great importance. Accordingly, in the present review, we provide a comparative and critical analysis of the current status of natural gas liquefaction technology through examination of the advantages and disadvantages associated with three natural gas liquefaction processes (namely, the cascade liquefaction cycle, the expander-based cycle and the mixed refrigerant cycle). It is shown that the energy consumption related to the cascade refrigeration cycle is the lowest.… More
  •   Views:236       Downloads:294        Download PDF
  • CFD-Based Numerical Analysis of the Thermal Characteristics of an Electric Vehicle Power Battery
  • Abstract Towards the end to solve the problem of temperature rise in the power battery of electric vehicles, a method based on the coupling of electrochemical, thermal and hydrodynamic aspects is implemented. The method relies on the COMSOL Multiphysics software, which is used here to simulate the thermal behaviour, the related fluid-dynamics and the life attenuation of the power battery. A 3D battery model is built assuming a cylindrical geometry. The diameter of the battery is 18 mm, and its length is 65 mm. The battery charges and discharges at 3C, and the initial temperature is 25°C. Intake flow is set to 0.5 m/s… More
  •   Views:126       Downloads:113        Download PDF
  • Numerical Simulation of Wake Vortices Generated by an A330-200 Aircraft in the Nearfield Phase
  • Abstract In order to overcome the typical limitation of earlier studies, where the simulation of aircraft wake vortices was essentially based on the half-model of symmetrical rectangular wings, in the present analysis the entire aircraft (a typical A330-200 aircraft) geometry is taken into account. Conditions corresponding to the nearfield phase (take-off and landing) are considered assuming a typical attitude angle of 7° and different crosswind intensities, i.e., 0, 2 and 5 m/s. The simulation results show that the aircraft wake vortices form a structurally eudipleural four-vortex system due to the existence of the sweepback angle. The vortex pair at the outer side… More
  •   Views:134       Downloads:129        Download PDF