CMCOpen Access

Computers, Materials & Continua

ISSN:1546-2218(print)
ISSN:1546-2226(online)
Publication Frequency:Monthly

  • Online
    Articles

    4316

  • on board
    editors

    112

Table of Content


About the Journal

Computers, Materials & Continua is a peer-reviewed Open Access journal that publishes all types of academic papers in the areas of computer networks, artificial intelligence, big data, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, and data analysis, modeling, designing and manufacturing of modern functional and multifunctional materials. This journal is published monthly by Tech Science Press.

Indexing and Abstracting

SCI: 2021 Impact Factor 3.860; Scopus CiteScore (Impact per Publication 2021): 4.9; SNIP (Source Normalized Impact per Paper 2021): 1.277; Ei Compendex; Cambridge Scientific Abstracts; INSPEC Databases; Science Navigator; EBSCOhost; ProQuest Central; Zentralblatt für Mathematik; Portico, etc.

  • Open Access

    ARTICLE

    A GDPR Compliant Approach to Assign Risk Levels to Privacy Policies

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4631-4647, 2023, DOI:10.32604/cmc.2023.034039
    Abstract Data privacy laws require service providers to inform their customers on how user data is gathered, used, protected, and shared. The General Data Protection Regulation (GDPR) is a legal framework that provides guidelines for collecting and processing personal information from individuals. Service providers use privacy policies to outline the ways an organization captures, retains, analyzes, and shares customers’ data with other parties. These policies are complex and written using legal jargon; therefore, users rarely read them before accepting them. There exist a number of approaches to automating the task of summarizing privacy policies and assigning risk levels. Most of the… More >

  • Open Access

    ARTICLE

    MI-STEG: A Medical Image Steganalysis Framework Based on Ensemble Deep Learning

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4649-4666, 2023, DOI:10.32604/cmc.2023.035881
    Abstract Medical image steganography aims to increase data security by concealing patient-personal information as well as diagnostic and therapeutic data in the spatial or frequency domain of radiological images. On the other hand, the discipline of image steganalysis generally provides a classification based on whether an image has hidden data or not. Inspired by previous studies on image steganalysis, this study proposes a deep ensemble learning model for medical image steganalysis to detect malicious hidden data in medical images and develop medical image steganography methods aimed at securing personal information. With this purpose in mind, a dataset containing brain Magnetic Resonance… More >

  • Open Access

    ARTICLE

    CLGA Net: Cross Layer Gated Attention Network for Image Dehazing

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4667-4684, 2023, DOI:10.32604/cmc.2023.031444
    Abstract In this paper, we propose an end-to-end cross-layer gated attention network (CLGA-Net) to directly restore fog-free images. Compared with the previous dehazing network, the dehazing model presented in this paper uses the smooth cavity convolution and local residual module as the feature extractor, combined with the channel attention mechanism, to better extract the restored features. A large amount of experimental data proves that the defogging model proposed in this paper is superior to previous defogging technologies in terms of structure similarity index (SSIM), peak signal to noise ratio (PSNR) and subjective visual quality. In order to improve the efficiency of… More >

  • Open Access

    ARTICLE

    DQN-Based Proactive Trajectory Planning of UAVs in Multi-Access Edge Computing

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4685-4702, 2023, DOI:10.32604/cmc.2023.034892
    Abstract The main aim of future mobile networks is to provide secure, reliable, intelligent, and seamless connectivity. It also enables mobile network operators to ensure their customer’s a better quality of service (QoS). Nowadays, Unmanned Aerial Vehicles (UAVs) are a significant part of the mobile network due to their continuously growing use in various applications. For better coverage, cost-effective, and seamless service connectivity and provisioning, UAVs have emerged as the best choice for telco operators. UAVs can be used as flying base stations, edge servers, and relay nodes in mobile networks. On the other side, Multi-access Edge Computing (MEC) technology also… More >

  • Open Access

    ARTICLE

    Smart Contract to Traceability of Food Social Selling

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4703-4728, 2023, DOI:10.32604/cmc.2023.031554
    Abstract Traditionally, food sustainability has been considered solely in the stage of agricultural production. However, globalization, the expansion of the food production industry, and the emergence of supermarket chains that control the retail food market require specific significant changes in supply chains in the food sector and, therefore, we need to address the economic, social, and environmental impacts of these events. On the other hand, social selling has increased rapidly in recent years, with a further boom, following current events related to the coronavirus disease (COVID-19). This explosion of social sales, where there are usually no control and regulation entities, can… More >

  • Open Access

    ARTICLE

    Implementation of VLSI on Signal Processing-Based Digital Architecture Using AES Algorithm

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4729-4745, 2023, DOI:10.32604/cmc.2023.033020
    Abstract Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved runtime effectiveness have been initiated… More >

  • Open Access

    ARTICLE

    Efficient Routing Protocol with Localization Based Priority & Congestion Control for UWSN

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4747-4768, 2023, DOI:10.32604/cmc.2023.032298
    Abstract The nodes in the sensor network have a wide range of uses, particularly on under-sea links that are skilled for detecting, handling as well as management. The underwater wireless sensor networks support collecting pollution data, mine survey, oceanographic information collection, aided navigation, strategic surveillance, and collection of ocean samples using detectors that are submerged in water. Localization, congestion routing, and prioritizing the traffic is the major issue in an underwater sensor network. Our scheme differentiates the different types of traffic and gives every type of traffic its requirements which is considered regarding network resource. Minimization of localization error using the… More >

  • Open Access

    ARTICLE

    Probe Attack Detection Using an Improved Intrusion Detection System

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4769-4784, 2023, DOI:10.32604/cmc.2023.033382
    Abstract The novel Software Defined Networking (SDN) architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business requirements with distinctive features. Nevertheless, such benefits lead to a more adverse environment entailing network breakdown, systems paralysis, and online banking fraudulence and robbery. As one of the most common and dangerous threats in SDN, probe attack occurs when the attacker scans SDN devices to collect the necessary knowledge on system susceptibilities, which is then manipulated to undermine the entire system. Precision, high performance, and real-time systems prove pivotal in successful goal… More >

  • Open Access

    ARTICLE

    Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4785-4799, 2023, DOI:10.32604/cmc.2022.032971
    Abstract Increasing energy demands due to factors such as population, globalization, and industrialization has led to increased challenges for existing energy infrastructure. Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable, cheap, and easily available sources of energy. Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions. But the integration of distributed energy sources and increase in electric demand enhance instability in the grid. Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness… More >

  • Open Access

    ARTICLE

    Using Informative Score for Instance Selection Strategy in Semi-Supervised Sentiment Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4801-4818, 2023, DOI:10.32604/cmc.2023.033752
    Abstract Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service. Existing studies heavily rely on sentiment classification methods that require fully annotated inputs. However, there is limited labelled text available, making the acquirement process of the fully annotated input costly and labour-intensive. Lately, semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods. Nevertheless, some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training. Literature also shows that not all unlabelled instances are equally useful; thus identifying the informative… More >

  • Open Access

    ARTICLE

    Throughput Analysis of HARQ Scheme Based on Full-Duplex Two-Way AF SWIPT Relay

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4819-4830, 2023, DOI:10.32604/cmc.2023.018637
    Abstract The simultaneous wireless information and power transfer (SWIPT) relay system is one of the emerging technologies. Xiaomi Corporation and Motorola Inc. recently launched indoor wireless power transfer equipment is one of the most promising applications. To tap the potential of the system, hybrid automatic repeat request (HARQ) is introduced into the SWIPT relay system. Firstly, the time slot structure of HARQ scheme based on full duplex two-way amplify and forward (AF) SWIPT relay is given, and its retransmission status is analyzed. Secondly, the equivalent signal-to-noise ratio and outage probability of various states are calculated by approximate simplification. Thirdly, the energy… More >

  • Open Access

    ARTICLE

    MCRO-PUF: A Novel Modified Crossover RO-PUF with an Ultra-Expanded CRP Space

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4831-4845, 2023, DOI:10.32604/cmc.2023.034981
    Abstract With the expanding use of the Internet of Things (IoT) devices and the connection of humans and devices to the Internet, the need to provide security in this field is constantly growing. The conventional cryptographic solutions need the IoT device to store secret keys in its non-volatile memory (NVM) leading the system to be vulnerable to physical attacks. In addition, they are not appropriate for IoT applications due to their complex calculations. Thus, physically unclonable functions (PUFs) have been introduced to simultaneously address these issues. PUFs are lightweight and easy-to-access hardware security primitives which employ the unique characteristics of integrated… More >

  • Open Access

    ARTICLE

    Resource Management in UAV Enabled MEC Networks

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4847-4860, 2023, DOI:10.32604/cmc.2023.030242
    Abstract Mobile edge cloud networks can be used to offload computationally intensive tasks from Internet of Things (IoT) devices to nearby mobile edge servers, thereby lowering energy consumption and response time for ground mobile users or IoT devices. Integration of Unmanned Aerial Vehicles (UAVs) and the mobile edge computing (MEC) server will significantly benefit small, battery-powered, and energy-constrained devices in 5G and future wireless networks. We address the problem of maximising computation efficiency in U-MEC networks by optimising the user association and offloading indicator (OI), the computational capacity (CC), the power consumption, the time duration, and the optimal location planning simultaneously.… More >

  • Open Access

    ARTICLE

    Multimodal Fuzzy Downstream Petroleum Supply Chain: A Novel Pentagonal Fuzzy Optimization

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4861-4879, 2023, DOI:10.32604/cmc.2023.032985
    Abstract The petroleum industry has a complex, inflexible and challenging supply chain (SC) that impacts both the national economy as well as people’s daily lives with a range of services, including transportation, heating, electricity, lubricants, as well as chemicals and petrochemicals. In the petroleum industry, supply chain management presents several challenges, especially in the logistics sector, that are not found in other industries. In addition, logistical challenges contribute significantly to the cost of oil. Uncertainty regarding customer demand and supply significantly affects SC networks. Hence, SC flexibility can be maintained by addressing uncertainty. On the other hand, in the real world,… More >

  • Open Access

    ARTICLE

    Efficient Body-Transfer Wheelchair for Assisting Functionally Impaired People

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4881-4900, 2023, DOI:10.32604/cmc.2023.032837
    Abstract Functionally impaired people always have difficulty accomplishing activities of daily living. In this regard, tasks including toileting and bathing have a higher prevalence rate of injuries and greater risk of falling. In this study, a body-transfer wheelchair was developed to assist people in transferring from bed to wheelchair for bathing, and toileting. The body-transfer wheelchair is a semi-automatic wheelchair that has features such as a controlled leg and backrest, linkage commode slot, and height adjustment. The wheelchair consists of a seat and a main frame that can be detached to enable bathtub transfer. This mechanism lets the user stay on… More >

  • Open Access

    ARTICLE

    Applying Job Shop Scheduling to SMEs Manufacturing Platform to Revitalize B2B Relationship

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4901-4916, 2023, DOI:10.32604/cmc.2023.035219
    Abstract A small and medium enterprises (SMEs) manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities. The optimal job shop scheduling is generated by utilizing the scheduling system of the platform, and a minimum production time, i.e., makespan decides whether the scheduling is optimal or not. This scheduling result allows manufacturers to achieve high productivity, energy savings, and customer satisfaction. Manufacturing in Industry 4.0 requires dynamic, uncertain, complex production environments, and customer-centered services. This paper proposes a novel method for solving the difficulties of the SMEs manufacturing by applying and implementing… More >

  • Open Access

    ARTICLE

    Social Engineering Attack Classifications on Social Media Using Deep Learning

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4917-4931, 2023, DOI:10.32604/cmc.2023.032373
    Abstract In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom dataset crawled from hundreds of… More >

  • Open Access

    ARTICLE

    Data Security Storage Mechanism Based on Blockchain Network

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4933-4950, 2023, DOI:10.32604/cmc.2023.034148
    Abstract With the rapid development of information technology, the development of blockchain technology has also been deeply impacted. When performing block verification in the blockchain network, if all transactions are verified on the chain, this will cause the accumulation of data on the chain, resulting in data storage problems. At the same time, the security of data is also challenged, which will put enormous pressure on the block, resulting in extremely low communication efficiency of the block. The traditional blockchain system uses the Merkle Tree method to store data. While verifying the integrity and correctness of the data, the amount of… More >

  • Open Access

    ARTICLE

    Shared Cache Based on Content Addressable Memory in a Multi-Core Architecture

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4951-4963, 2023, DOI:10.32604/cmc.2023.032822
    Abstract Modern shared-memory multi-core processors typically have shared Level 2 (L2) or Level 3 (L3) caches. Cache bottlenecks and replacement strategies are the main problems of such architectures, where multiple cores try to access the shared cache simultaneously. The main problem in improving memory performance is the shared cache architecture and cache replacement. This paper documents the implementation of a Dual-Port Content Addressable Memory (DPCAM) and a modified Near-Far Access Replacement Algorithm (NFRA), which was previously proposed as a shared L2 cache layer in a multi-core processor. Standard Performance Evaluation Corporation (SPEC) Central Processing Unit (CPU) 2006 benchmark workloads are used… More >

  • Open Access

    ARTICLE

    Sparrow Search Optimization with Transfer Learning-Based Crowd Density Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4965-4981, 2023, DOI:10.32604/cmc.2023.033705
    Abstract Due to the rapid increase in urbanization and population, crowd gatherings are frequently observed in the form of concerts, political, and religious meetings. HAJJ is one of the well-known crowding events that takes place every year in Makkah, Saudi Arabia. Crowd density estimation and crowd monitoring are significant research areas in Artificial Intelligence (AI) applications. The current research study develops a new Sparrow Search Optimization with Deep Transfer Learning based Crowd Density Detection and Classification (SSODTL-CD2C) model. The presented SSODTL-CD2C technique majorly focuses on the identification and classification of crowd densities. To attain this, SSODTL-CD2C technique exploits Oppositional Salp Swarm… More >

  • Open Access

    ARTICLE

    Transparent Access to Heterogeneous IoT Based on Virtual Resources

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4983-4999, 2023, DOI:10.32604/cmc.2023.020851
    Abstract The Internet of Things (IoT) inspires industries to deploy a massive number of connected devices to provide smart and ubiquitous services to influence our daily life. Edge computing leverages sufficient computation and storage at the edge of the network to enable deploying complex functions closer to the environment using Internet-connected devices. According to the purpose of the environment including privacy level, domain functionality, network scale and service quality, various environment-specific services can be provided through heterogeneous applications with sensors and actuators based on edge computing. However, for providing user-friendly service scenarios based on the transparent access to heterogeneous devices in… More >

  • Open Access

    ARTICLE

    Detecting Tuberculosis from Vietnamese X-Ray Imaging Using Transfer Learning Approach

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5001-5016, 2023, DOI:10.32604/cmc.2023.033429
    Abstract Deep learning created a sharp rise in the development of autonomous image recognition systems, especially in the case of the medical field. Among lung problems, tuberculosis, caused by a bacterium called Mycobacterium tuberculosis, is a dangerous disease because of its infection and damage. When an infected person coughs or sneezes, tiny droplets can bring pathogens to others through inhaling. Tuberculosis mainly damages the lungs, but it also affects any part of the body. Moreover, during the period of the COVID-19 (coronavirus disease 2019) pandemic, the access to tuberculosis diagnosis and treatment has become more difficult, so early and simple detection… More >

  • Open Access

    ARTICLE

    Leveraging Transfer Learning for Spatio-Temporal Human Activity Recognition from Video Sequences

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5017-5033, 2023, DOI:10.32604/cmc.2023.035512
    Abstract Human Activity Recognition (HAR) is an active research area due to its applications in pervasive computing, human-computer interaction, artificial intelligence, health care, and social sciences. Moreover, dynamic environments and anthropometric differences between individuals make it harder to recognize actions. This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications. It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network. Moreover, the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information. Six state-of-the-art pre-trained models… More >

  • Open Access

    ARTICLE

    Offshore Software Maintenance Outsourcing Process Model Validation: A Case Study Approach

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5035-5048, 2023, DOI:10.32604/cmc.2023.034692
    Abstract The successful execution and management of Offshore Software Maintenance Outsourcing (OSMO) can be very beneficial for OSMO vendors and the OSMO client. Although a lot of research on software outsourcing is going on, most of the existing literature on offshore outsourcing deals with the outsourcing of software development only. Several frameworks have been developed focusing on guiding software system managers concerning offshore software outsourcing. However, none of these studies delivered comprehensive guidelines for managing the whole process of OSMO. There is a considerable lack of research working on managing OSMO from a vendor’s perspective. Therefore, to find the best practices… More >

  • Open Access

    ARTICLE

    Improving Brain Tumor Classification with Deep Learning Using Synthetic Data

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5049-5067, 2023, DOI:10.32604/cmc.2023.035584
    Abstract Deep learning (DL) techniques, which do not need complex pre-processing and feature analysis, are used in many areas of medicine and achieve promising results. On the other hand, in medical studies, a limited dataset decreases the abstraction ability of the DL model. In this context, we aimed to produce synthetic brain images including three tumor types (glioma, meningioma, and pituitary), unlike traditional data augmentation methods, and classify them with DL. This study proposes a tumor classification model consisting of a Dense Convolutional Network (DenseNet121)-based DL model to prevent forgetting problems in deep networks and delay information flow between layers. By… More >

  • Open Access

    ARTICLE

    Research on Federated Learning Data Sharing Scheme Based on Differential Privacy

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5069-5085, 2023, DOI:10.32604/cmc.2023.034571
    Abstract To realize data sharing, and to fully use the data value, breaking the data island between institutions to realize data collaboration has become a new sharing mode. This paper proposed a distributed data security sharing scheme based on C/S communication mode, and constructed a federated learning architecture that uses differential privacy technology to protect training parameters. Clients do not need to share local data, and they only need to upload the trained model parameters to achieve data sharing. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible for issuing training commands and… More >

  • Open Access

    ARTICLE

    A New Generative Mathematical Model for Coverless Steganography System Based on Image Generation

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5087-5103, 2023, DOI:10.32604/cmc.2023.035364
    Abstract The ability of any steganography system to correctly retrieve the secret message is the primary criterion for measuring its efficiency. Recently, researchers have tried to generate a new natural image driven from only the secret message bits rather than using a cover to embed the secret message within it; this is called the stego image. This paper proposes a new secured coverless steganography system using a generative mathematical model based on semi Quick Response (QR) code and maze game image generation. This system consists of two components. The first component contains two processes, encryption process, and hiding process. The encryption… More >

  • Open Access

    REVIEW

    Artificial Intelligence-Enabled Chatbots in Mental Health: A Systematic Review

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5105-5122, 2023, DOI:10.32604/cmc.2023.034655
    Abstract Clinical applications of Artificial Intelligence (AI) for mental health care have experienced a meteoric rise in the past few years. AI-enabled chatbot software and applications have been administering significant medical treatments that were previously only available from experienced and competent healthcare professionals. Such initiatives, which range from “virtual psychiatrists” to “social robots” in mental health, strive to improve nursing performance and cost management, as well as meeting the mental health needs of vulnerable and underserved populations. Nevertheless, there is still a substantial gap between recent progress in AI mental health and the widespread use of these solutions by healthcare practitioners… More >

  • Open Access

    ARTICLE

    Impact of Artificial Compressibility on the Numerical Solution of Incompressible Nanofluid Flow

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5123-5139, 2023, DOI:10.32604/cmc.2023.034008
    Abstract The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies. Therefore, this paper… More >

  • Open Access

    ARTICLE

    A Defect Detection Method for the Primary Stage of Software Development

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5141-5155, 2023, DOI:10.32604/cmc.2023.035846
    Abstract In the early stage of software development, a software requirements specification (SRS) is essential, and whether the requirements are clear and explicit is the key. However, due to various reasons, there may be a large number of misunderstandings. To generate high-quality software requirements specifications, numerous researchers have developed a variety of ways to improve the quality of SRS. In this paper, we propose a questions extraction method based on SRS elements decomposition, which evaluates the quality of SRS in the form of numerical indicators. The proposed method not only evaluates the quality of SRSs but also helps in the detection… More >

  • Open Access

    ARTICLE

    Underwater Image Enhancement Using Customized CLAHE and Adaptive Color Correction

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5157-5172, 2023, DOI:10.32604/cmc.2023.033339
    Abstract Underwater images degraded due to low contrast and visibility issues. Therefore, it is important to enhance the images and videos taken in the underwater environment before processing. Enhancement is a way to improve or increase image quality and to improve the contrast of degraded images. The original image or video which is captured through image processing devices needs to improve as there are various issues such as less light available, low resolution, and blurriness in underwater images caused by the normal camera. Various researchers have proposed different solutions to overcome these problems. Dark channel prior (DCP) is one of the… More >

  • Open Access

    ARTICLE

    Adaptive Reversible Visible Watermarking Based on Total Variation for BTC-Compressed Images

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5173-5189, 2023, DOI:10.32604/cmc.2023.034819
    Abstract Few previous Reversible Visible Watermarking (RVW) schemes have both good transparency and watermark visibility. An adaptive RVW scheme that integrates Total Variation and visual perception in Block Truncation Coding (BTC) compressed domain, called TVB-RVW is proposed in this paper. A new mean image estimation method for BTC-compressed images is first developed with the help of Total Variation. Then, a visual perception factor computation model is devised by fusing texture and luminance characteristics. An adaptive watermark embedding strategy is used to embed the visible watermark with the effect of the visual perception factor in the BTC domain. Moreover, a lossless embedding… More >

  • Open Access

    ARTICLE

    Data Augmentation and Random Multi-Model Deep Learning for Data Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5191-5207, 2023, DOI:10.32604/cmc.2022.029420
    Abstract In the machine learning (ML) paradigm, data augmentation serves as a regularization approach for creating ML models. The increase in the diversification of training samples increases the generalization capabilities, which enhances the prediction performance of classifiers when tested on unseen examples. Deep learning (DL) models have a lot of parameters, and they frequently overfit. Effectively, to avoid overfitting, data plays a major role to augment the latest improvements in DL. Nevertheless, reliable data collection is a major limiting factor. Frequently, this problem is undertaken by combining augmentation of data, transfer learning, dropout, and methods of normalization in batches. In this… More >

  • Open Access

    ARTICLE

    Reconfigurable Sensing Time in Cooperative Cognitive Network Using Machine Learning

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5209-5227, 2023, DOI:10.32604/cmc.2023.026945
    Abstract A cognitive radio network (CRN) intelligently utilizes the available spectral resources by sensing and learning from the radio environment to maximize spectrum utilization. In CRNs, the secondary users (SUs) opportunistically access the primary users (PUs) spectrum. Therefore, unambiguous detection of the PU channel occupancy is the most critical aspect of the operations of CRNs. Cooperative spectrum sensing (CSS) is rated as the best choice for making reliable sensing decisions. This paper employs machine-learning tools to sense the PU channels reliably in CSS. The sensing parameters are reconfigured to maximize the spectrum utilization while reducing sensing error and cost with improved… More >

  • Open Access

    ARTICLE

    Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5229-5250, 2023, DOI:10.32604/cmc.2023.032469
    Abstract Renewable energy sources are gaining popularity, particularly photovoltaic energy as a clean energy source. This is evident in the advancement of scientific research aimed at improving solar cell performance. Due to the non-linear nature of the photovoltaic cell, modeling solar cells and extracting their parameters is one of the most important challenges in this discipline. As a result, the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate. In this paper, a weIghted meaN oF vectOrs algorithm (INFO) that calculates the weighted mean for a set of vectors in the search space has… More >

  • Open Access

    ARTICLE

    Automated Autism Spectral Disorder Classification Using Optimal Machine Learning Model

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5251-5265, 2023, DOI:10.32604/cmc.2023.032729
    Abstract Autism Spectrum Disorder (ASD) refers to a neuro-disorder where an individual has long-lasting effects on communication and interaction with others. Advanced information technology which employs artificial intelligence (AI) model has assisted in early identify ASD by using pattern detection. Recent advances of AI models assist in the automated identification and classification of ASD, which helps to reduce the severity of the disease. This study introduces an automated ASD classification using owl search algorithm with machine learning (ASDC-OSAML) model. The proposed ASDC-OSAML model majorly focuses on the identification and classification of ASD. To attain this, the presented ASDC-OSAML model follows min-max… More >

  • Open Access

    ARTICLE

    Brain Tumor Segmentation in Multimodal MRI Using U-Net Layered Structure

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5267-5281, 2023, DOI:10.32604/cmc.2023.033024
    Abstract The brain tumour is the mass where some tissues become old or damaged, but they do not die or not leave their space. Mainly brain tumour masses occur due to malignant masses. These tissues must die so that new tissues are allowed to be born and take their place. Tumour segmentation is a complex and time-taking problem due to the tumour’s size, shape, and appearance variation. Manually finding such masses in the brain by analyzing Magnetic Resonance Images (MRI) is a crucial task for experts and radiologists. Radiologists could not work for large volume images simultaneously, and many errors occurred… More >

  • Open Access

    ARTICLE

    Billiards Optimization Algorithm: A New Game-Based Metaheuristic Approach

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5283-5300, 2023, DOI:10.32604/cmc.2023.034695
    Abstract Metaheuristic algorithms are one of the most widely used stochastic approaches in solving optimization problems. In this paper, a new metaheuristic algorithm entitled Billiards Optimization Algorithm (BOA) is proposed and designed to be used in optimization applications. The fundamental inspiration in BOA design is the behavior of the players and the rules of the billiards game. Various steps of BOA are described and then its mathematical model is thoroughly explained. The efficiency of BOA in dealing with optimization problems is evaluated through optimizing twenty-three standard benchmark functions of different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal functions. In order… More >

  • Open Access

    ARTICLE

    Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5301-5317, 2023, DOI:10.32604/cmc.2023.032856
    Abstract Recommendation services become an essential and hot research topic for researchers nowadays. Social data such as Reviews play an important role in the recommendation of the products. Improvement was achieved by deep learning approaches for capturing user and product information from a short text. However, such previously used approaches do not fairly and efficiently incorporate users’ preferences and product characteristics. The proposed novel Hybrid Deep Collaborative Filtering (HDCF) model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations. To overcome the cold start problem, the new overall rating is generated by aggregating the Deep Multivariate… More >

  • Open Access

    ARTICLE

    A Transaction Frequency Based Trust for E-Commerce

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5319-5329, 2023, DOI:10.32604/cmc.2023.033798
    Abstract Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration, which makes it easy for one party of the transaction to obtain a high trust value in a short time, and brings many disadvantages, uncertainties and even attacks. To solve this problem, a transaction frequency based trust is proposed in this study. The proposed method is composed of two parts. The first part is built on the classic Bayes analysis based trust models which are ease of computing for the E-commerce system. The second part is the transaction frequency module which can… More >

  • Open Access

    ARTICLE

    Efficient Numerical Scheme for Solving Large System of Nonlinear Equations

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5331-5347, 2023, DOI:10.32604/cmc.2023.033528
    Abstract A fifth-order family of an iterative method for solving systems of nonlinear equations and highly nonlinear boundary value problems has been developed in this paper. Convergence analysis demonstrates that the local order of convergence of the numerical method is five. The computer algebra system CAS-Maple, Mathematica, or MATLAB was the primary tool for dealing with difficult problems since it allows for the handling and manipulation of complex mathematical equations and other mathematical objects. Several numerical examples are provided to demonstrate the properties of the proposed rapidly convergent algorithms. A dynamic evaluation of the presented methods is also presented utilizing basins… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Model Enabled Secure UAV Classification for Industry 4.0

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5349-5367, 2023, DOI:10.32604/cmc.2023.033532
    Abstract Emerging technologies such as edge computing, Internet of Things (IoT), 5G networks, big data, Artificial Intelligence (AI), and Unmanned Aerial Vehicles (UAVs) empower, Industry 4.0, with a progressive production methodology that shows attention to the interaction between machine and human beings. In the literature, various authors have focused on resolving security problems in UAV communication to provide safety for vital applications. The current research article presents a Circle Search Optimization with Deep Learning Enabled Secure UAV Classification (CSODL-SUAVC) model for Industry 4.0 environment. The suggested CSODL-SUAVC methodology is aimed at accomplishing two core objectives such as secure communication via image… More >

  • Open Access

    ARTICLE

    Test Case Prioritization in Unit and Integration Testing: A Shuffled-Frog-Leaping Approach

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5369-5387, 2023, DOI:10.32604/cmc.2023.031261
    Abstract Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product. Due to resource constraints, when software is subjected to modifications, the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy. One such strategy is test case prioritization (TCP). Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest. Nonetheless, singularity in objective functions and the lack of dissimilitude among… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Architecture for Securing Industrial IoTs Data in Electric Smart Grid

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5389-5416, 2023, DOI:10.32604/cmc.2023.034331
    Abstract There are numerous internet-connected devices attached to the industrial process through recent communication technologies, which enable machine-to-machine communication and the sharing of sensitive data through a new technology called the industrial internet of things (IIoTs). Most of the suggested security mechanisms are vulnerable to several cybersecurity threats due to their reliance on cloud-based services, external trusted authorities, and centralized architectures; they have high computation and communication costs, low performance, and are exposed to a single authority of failure and bottleneck. Blockchain technology (BC) is widely adopted in the industrial sector for its valuable features in terms of decentralization, security, and… More >

  • Open Access

    ARTICLE

    Identification of Anomaly Scenes in Videos Using Graph Neural Networks

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5417-5430, 2023, DOI:10.32604/cmc.2023.033590
    Abstract Generally, conventional methods for anomaly detection rely on clustering, proximity, or classification. With the massive growth in surveillance videos, outliers or anomalies find ingenious ways to obscure themselves in the network and make conventional techniques inefficient. This research explores the structure of Graph neural networks (GNNs) that generalize deep learning frameworks to graph-structured data. Every node in the graph structure is labeled and anomalies, represented by unlabeled nodes, are predicted by performing random walks on the node-based graph structures. Due to their strong learning abilities, GNNs gained popularity in various domains such as natural language processing, social network analytics and… More >

  • Open Access

    ARTICLE

    Energy Theft Detection in Smart Grids with Genetic Algorithm-Based Feature Selection

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5431-5446, 2023, DOI:10.32604/cmc.2023.033884
    Abstract As big data, its technologies, and application continue to advance, the Smart Grid (SG) has become one of the most successful pervasive and fixed computing platforms that efficiently uses a data-driven approach and employs efficient information and communication technology (ICT) and cloud computing. As a result of the complicated architecture of cloud computing, the distinctive working of advanced metering infrastructures (AMI), and the use of sensitive data, it has become challenging to make the SG secure. Faults of the SG are categorized into two main categories, Technical Losses (TLs) and Non-Technical Losses (NTLs). Hardware failure, communication issues, ohmic losses, and… More >

  • Open Access

    ARTICLE

    Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5447-5465, 2023, DOI:10.32604/cmc.2023.033564
    Abstract The text classification process has been extensively investigated in various languages, especially English. Text classification models are vital in several Natural Language Processing (NLP) applications. The Arabic language has a lot of significance. For instance, it is the fourth mostly-used language on the internet and the sixth official language of the United Nations. However, there are few studies on the text classification process in Arabic. A few text classification studies have been published earlier in the Arabic language. In general, researchers face two challenges in the Arabic text classification process: low accuracy and high dimensionality of the features. In this… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5467-5482, 2023, DOI:10.32604/cmc.2023.033534
    Abstract The recognition of the Arabic characters is a crucial task in computer vision and Natural Language Processing fields. Some major complications in recognizing handwritten texts include distortion and pattern variabilities. So, the feature extraction process is a significant task in NLP models. If the features are automatically selected, it might result in the unavailability of adequate data for accurately forecasting the character classes. But, many features usually create difficulties due to high dimensionality issues. Against this background, the current study develops a Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition (SFODTL-AHCR) model. The projected SFODTL-AHCR model primarily focuses… More >

  • Open Access

    ARTICLE

    Novel Computer-Aided Diagnosis System for the Early Detection of Alzheimer’s Disease

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5483-5505, 2023, DOI:10.32604/cmc.2023.032341
    Abstract Aging is a natural process that leads to debility, disease, and dependency. Alzheimer’s disease (AD) causes degeneration of the brain cells leading to cognitive decline and memory loss, as well as dependence on others to fulfill basic daily needs. AD is the major cause of dementia. Computer-aided diagnosis (CADx) tools aid medical practitioners in accurately identifying diseases such as AD in patients. This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop (IWD) algorithm and the Random Forest (RF) classifier. The IWD algorithm an efficient feature selection method, was used to… More >

  • Open Access

    ARTICLE

    Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5507-5525, 2023, DOI:10.32604/cmc.2023.032843
    Abstract The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features. Electric kickboards are gradually growing in popularity in tourist and education-centric localities. In the upcoming arrival of electric kickboard vehicles, deploying a customer rental service is essential. Due to its free-floating nature, the shared electric kickboard is a common and practical means of transportation. Relocation plans for shared electric kickboards are required to increase the quality of service, and forecasting demand for their use in a specific region is crucial. Predicting demand accurately with small data is troublesome. Extensive… More >

  • Open Access

    ARTICLE

    Multi-Tier Sentiment Analysis of Social Media Text Using Supervised Machine Learning

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5527-5543, 2023, DOI:10.32604/cmc.2023.033190
    Abstract Sentiment Analysis (SA) is often referred to as opinion mining. It is defined as the extraction, identification, or characterization of the sentiment from text. Generally, the sentiment of a textual document is classified into binary classes i.e., positive and negative. However, fine-grained classification provides a better insight into the sentiments. The downside is that fine-grained classification is more challenging as compared to binary. On the contrary, performance deteriorates significantly in the case of multi-class classification. In this study, pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored. To augment the performance, a multi-layer classification model… More >

  • Open Access

    ARTICLE

    Smart Techniques for LULC Micro Class Classification Using Landsat8 Imagery

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5545-5557, 2023, DOI:10.32604/cmc.2023.033449
    Abstract Wheat species play important role in the price of products and wheat production estimation. There are several mathematical models used for the estimation of the wheat crop but these models are implemented without considering the wheat species which is an important independent variable. The task of wheat species identification is challenging both for human experts as well as for computer vision-based solutions. With the use of satellite remote sensing, it is possible to identify and monitor wheat species on a large scale at any stage of the crop life cycle. In this work, nine popular wheat species are identified by… More >

  • Open Access

    ARTICLE

    Hybrid Feature Selection Method for Predicting Alzheimer’s Disease Using Gene Expression Data

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5559-5572, 2023, DOI:10.32604/cmc.2023.034734
    Abstract Gene expression (GE) classification is a research trend as it has been used to diagnose and prognosis many diseases. Employing machine learning (ML) in the prediction of many diseases based on GE data has been a flourishing research area. However, some diseases, like Alzheimer’s disease (AD), have not received considerable attention, probably owing to data scarcity obstacles. In this work, we shed light on the prediction of AD from GE data accurately using ML. Our approach consists of four phases: preprocessing, gene selection (GS), classification, and performance validation. In the preprocessing phase, gene columns are preprocessed identically. In the GS… More >

  • Open Access

    ARTICLE

    Convolutional Neural Network for Overcrowded Public Transportation Pickup Truck Detection

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5573-5588, 2023, DOI:10.32604/cmc.2023.033900
    Abstract Thailand has been on the World Health Organization (WHO)’s notorious deadliest road list for several years, currently ranking eighth on the list. Among all types of road fatalities, pickup trucks converted into vehicles for public transportation are found to be the most problematic due to their high occupancy and minimal passenger safety measures, such as safety belts. Passenger overloading is illegal, but it is often overlooked. The country often uses police checkpoints to enforce traffic laws. However, there are few or no highway patrols to apprehend offending drivers. Therefore, in this study, we propose the use of existing closed-circuit television… More >

  • Open Access

    ARTICLE

    Efficient Power Control for UAV Based on Trajectory and Game Theory

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5589-5606, 2023, DOI:10.32604/cmc.2023.034323
    Abstract Due to the fact that network space is becoming more limited, the implementation of ultra-dense networks (UDNs) has the potential to enhance not only network coverage but also network throughput. Unmanned Aerial Vehicle (UAV) communications have recently garnered a lot of attention due to the fact that they are extremely versatile and may be applied to a wide variety of contexts and purposes. A cognitive UAV is proposed as a solution for the Internet of Things ground terminal’s wireless nodes in this article. In the IoT system, the UAV is utilised not only to determine how the resources should be… More >

  • Open Access

    ARTICLE

    Resource Exhaustion Attack Detection Scheme for WLAN Using Artificial Neural Network

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5607-5623, 2023, DOI:10.32604/cmc.2023.031047
    Abstract IEEE 802.11 Wi-Fi networks are prone to many denial of service (DoS) attacks due to vulnerabilities at the media access control (MAC) layer of the 802.11 protocol. Due to the data transmission nature of the wireless local area network (WLAN) through radio waves, its communication is exposed to the possibility of being attacked by illegitimate users. Moreover, the security design of the wireless structure is vulnerable to versatile attacks. For example, the attacker can imitate genuine features, rendering classification-based methods inaccurate in differentiating between real and false messages. Although many security standards have been proposed over the last decades to… More >

  • Open Access

    REVIEW

    A Review of Machine Learning Techniques in Cyberbullying Detection

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5625-5640, 2023, DOI:10.32604/cmc.2023.033682
    Abstract Automatic identification of cyberbullying is a problem that is gaining traction, especially in the Machine Learning areas. Not only is it complicated, but it has also become a pressing necessity, considering how social media has become an integral part of adolescents’ lives and how serious the impacts of cyberbullying and online harassment can be, particularly among teenagers. This paper contains a systematic literature review of modern strategies, machine learning methods, and technical means for detecting cyberbullying and the aggressive command of an individual in the information space of the Internet. We undertake an in-depth review of 13 papers from four… More >

  • Open Access

    ARTICLE

    An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-II

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5641-5661, 2023, DOI:10.32604/cmc.2023.033733
    Abstract In computer vision, convolutional neural networks have a wide range of uses. Images represent most of today’s data, so it’s important to know how to handle these large amounts of data efficiently. Convolutional neural networks have been shown to solve image processing problems effectively. However, when designing the network structure for a particular problem, you need to adjust the hyperparameters for higher accuracy. This technique is time consuming and requires a lot of work and domain knowledge. Designing a convolutional neural network architecture is a classic NP-hard optimization challenge. On the other hand, different datasets require different combinations of models… More >

  • Open Access

    ARTICLE

    Modeling of Computer Virus Propagation with Fuzzy Parameters

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5663-5678, 2023, DOI:10.32604/cmc.2023.033319
    Abstract Typically, a computer has infectivity as soon as it is infected. It is a reality that no antivirus programming can identify and eliminate all kinds of viruses, suggesting that infections would persevere on the Internet. To understand the dynamics of the virus propagation in a better way, a computer virus spread model with fuzzy parameters is presented in this work. It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity, which depends on the quantity of virus. Considering this, the parameters and being… More >

  • Open Access

    ARTICLE

    Modeling CO2 Emission in Residential Sector of Three Countries in Southeast of Asia by Applying Intelligent Techniques

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5679-5690, 2023, DOI:10.32604/cmc.2023.034726
    Abstract Residential sector is one of the energy-consuming districts of countries that causes CO2 emission in large extent. In this regard, this sector must be considered in energy policy making related to the reduction of emission of CO2 and other greenhouse gases. In the present work, CO2 emission related to the residential sector of three countries, including Indonesia, Thailand, and Vietnam in Southeast Asia, are discussed and modeled by employing Group Method of Data Handling (GMDH) and Multilayer Perceptron (MLP) neural networks as powerful intelligent methods. Prior to modeling, data related to the energy consumption of these countries are represented, discussed,… More >

  • Open Access

    ARTICLE

    Severity Based Light-Weight Encryption Model for Secure Medical Information System

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5691-5704, 2023, DOI:10.32604/cmc.2023.034435
    Abstract As the amount of medical images transmitted over networks and kept on online servers continues to rise, the need to protect those images digitally is becoming increasingly important. However, due to the massive amounts of multimedia and medical pictures being exchanged, low computational complexity techniques have been developed. Most commonly used algorithms offer very little security and require a great deal of communication, all of which add to the high processing costs associated with using them. First, a deep learning classifier is used to classify records according to the degree of concealment they require. Medical images that aren’t needed can… More >

  • Open Access

    ARTICLE

    Optimizing Service Stipulation Uncertainty with Deep Reinforcement Learning for Internet Vehicle Systems

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5705-5721, 2023, DOI:10.32604/cmc.2023.033194
    Abstract Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System (CPS) applications. Edge devices enable limited computational capacity and energy availability that hamper end user performance. We designed a novel performance measurement index to gauge a device’s resource capacity. This examination addresses the offloading mechanism issues, where the end user (EU) offloads a part of its workload to a nearby edge server (ES). Sometimes, the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources (such as storage and computation). The manuscript aims to… More >

  • Open Access

    ARTICLE

    Intelligent Modulation Recognition of Communication Signal for Next-Generation 6G Networks

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5723-5740, 2023, DOI:10.32604/cmc.2023.033408
    Abstract In recent years, the need for a fast, efficient and a reliable wireless network has increased dramatically. Numerous 5G networks have already been tested while a few are in the early stages of deployment. In non-cooperative communication scenarios, the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them. The recent advancements in both Machine Learning (ML) and Deep Learning (DL) models demand the development of effective modulation recognition models with self-learning capability. In this background, the current research article designs a Deep Learning enabled Intelligent Modulation Recognition of Communication Signal… More >

  • Open Access

    ARTICLE

    A More Efficient Approach for Remote Sensing Image Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5741-5756, 2023, DOI:10.32604/cmc.2023.034921
    Abstract Over the past decade, the significant growth of the convolutional neural network (CNN) based on deep learning (DL) approaches has greatly improved the machine learning (ML) algorithm’s performance on the semantic scene classification (SSC) of remote sensing images (RSI). However, the unbalanced attention to classification accuracy and efficiency has made the superiority of DL-based algorithms, e.g., automation and simplicity, partially lost. Traditional ML strategies (e.g., the handcrafted features or indicators) and accuracy-aimed strategies with a high trade-off (e.g., the multi-stage CNNs and ensemble of multi-CNNs) are widely used without any training efficiency optimization involved, which may result in suboptimal performance.… More >

  • Open Access

    ARTICLE

    Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5757-5776, 2023, DOI:10.32604/cmc.2022.028340
    Abstract Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic (PV) systems. In light of this requirement, this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment. To achieve this, different types of faults in grid-connected PV systems (GCPVs) and their impact on the energy loss associated with the electrical network are analyzed. A data-driven approach using neural networks (NNs) is proposed to achieve root cause analysis and localize the fault to the component level in the system.… More >

  • Open Access

    ARTICLE

    Process Mining Discovery Techniques for Software Architecture Lightweight Evaluation Framework

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5777-5797, 2023, DOI:10.32604/cmc.2023.032504
    Abstract This research recognizes the limitation and challenges of adapting and applying Process Mining as a powerful tool and technique in the Hypothetical Software Architecture (SA) Evaluation Framework with the features and factors of lightweightness. Process mining deals with the large-scale complexity of security and performance analysis, which are the goals of SA evaluation frameworks. As a result of these conjectures, all Process Mining researches in the realm of SA are thoroughly reviewed, and nine challenges for Process Mining Adaption are recognized. Process mining is embedded in the framework and to boost the quality of the SA model for further analysis,… More >

  • Open Access

    ARTICLE

    A Novel Wrapper-Based Optimization Algorithm for the Feature Selection and Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5799-5820, 2023, DOI:10.32604/cmc.2023.034025
    Abstract Machine learning (ML) practices such as classification have played a very important role in classifying diseases in medical science. Since medical science is a sensitive field, the pre-processing of medical data requires careful handling to make quality clinical decisions. Generally, medical data is considered high-dimensional and complex data that contains many irrelevant and redundant features. These factors indirectly upset the disease prediction and classification accuracy of any ML model. To address this issue, various data pre-processing methods called Feature Selection (FS) techniques have been presented in the literature. However, the majority of such techniques frequently suffer from local minima issues… More >

  • Open Access

    ARTICLE

    An Automatic Threshold Selection Using ALO for Healthcare Duplicate Record Detection with Reciprocal Neuro-Fuzzy Inference System

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5821-5836, 2023, DOI:10.32604/cmc.2023.033995
    Abstract ESystems based on EHRs (Electronic health records) have been in use for many years and their amplified realizations have been felt recently. They still have been pioneering collections of massive volumes of health data. Duplicate detections involve discovering records referring to the same practical components, indicating tasks, which are generally dependent on several input parameters that experts yield. Record linkage specifies the issue of finding identical records across various data sources. The similarity existing between two records is characterized based on domain-based similarity functions over different features. De-duplication of one dataset or the linkage of multiple data sets has become… More >

  • Open Access

    ARTICLE

    Predicting and Curing Depression Using Long Short Term Memory and Global Vector

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5837-5852, 2023, DOI:10.32604/cmc.2023.033431
    Abstract In today’s world, there are many people suffering from mental health problems such as depression and anxiety. If these conditions are not identified and treated early, they can get worse quickly and have far-reaching negative effects. Unfortunately, many people suffering from these conditions, especially depression and hypertension, are unaware of their existence until the conditions become chronic. Thus, this paper proposes a novel approach using Bi-directional Long Short-Term Memory (Bi-LSTM) algorithm and Global Vector (GloVe) algorithm for the prediction and treatment of these conditions. Smartwatches and fitness bands can be equipped with these algorithms which can share data with a… More >

  • Open Access

    ARTICLE

    Exploiting Human Pose and Scene Information for Interaction Detection

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5853-5870, 2023, DOI:10.32604/cmc.2023.033769
    Abstract Identifying human actions and interactions finds its use in many areas, such as security, surveillance, assisted living, patient monitoring, rehabilitation, sports, and e-learning. This wide range of applications has attracted many researchers to this field. Inspired by the existing recognition systems, this paper proposes a new and efficient human-object interaction recognition (HOIR) model which is based on modeling human pose and scene feature information. There are different aspects involved in an interaction, including the humans, the objects, the various body parts of the human, and the background scene. The main objectives of this research include critically examining the importance of… More >

  • Open Access

    ARTICLE

    Feature-Limited Prediction on the UCI Heart Disease Dataset

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5871-5883, 2023, DOI:10.32604/cmc.2023.033603
    Abstract Heart diseases are the undisputed leading causes of death globally. Unfortunately, the conventional approach of relying solely on the patient’s medical history is not enough to reliably diagnose heart issues. Several potentially indicative factors exist, such as abnormal pulse rate, high blood pressure, diabetes, high cholesterol, etc. Manually analyzing these health signals’ interactions is challenging and requires years of medical training and experience. Therefore, this work aims to harness machine learning techniques that have proved helpful for data-driven applications in the rise of the artificial intelligence era. More specifically, this paper builds a hybrid model as a tool for data… More >

  • Open Access

    ARTICLE

    High-Bandwidth, Low-Power CMOS Transistor Based CAB for Field Programmable Analog Array

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5885-5900, 2023, DOI:10.32604/cmc.2023.033789
    Abstract This article presents an integrated current mode configurable analog block (CAB) system for field-programmable analog array (FPAA). The proposed architecture is based on the complementary metal-oxide semiconductor (CMOS) transistor level design where MOSFET transistors operating in the saturation region are adopted. The proposed CAB architecture is designed to implement six of the widely used current mode operations in analog processing systems: addition, subtraction, integration, multiplication, division, and pass operation. The functionality of the proposed CAB is demonstrated through these six operations, where each operation is chosen based on the user’s selection in the CAB interface system. The architecture of the… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Based Cybersecurity Phishing Email Detection and Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5901-5914, 2023, DOI:10.32604/cmc.2023.030784
    Abstract Phishing is a type of cybercrime in which cyber-attackers pose themselves as authorized persons or entities and hack the victims’ sensitive data. E-mails, instant messages and phone calls are some of the common modes used in cyberattacks. Though the security models are continuously upgraded to prevent cyberattacks, hackers find innovative ways to target the victims. In this background, there is a drastic increase observed in the number of phishing emails sent to potential targets. This scenario necessitates the importance of designing an effective classification model. Though numerous conventional models are available in the literature for proficient classification of phishing emails,… More >

  • Open Access

    ARTICLE

    A Stochastic Framework for Solving the Prey-Predator Delay Differential Model of Holling Type-III

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5915-5930, 2023, DOI:10.32604/cmc.2023.034362
    Abstract The current research aims to implement the numerical results for the Holling third kind of functional response delay differential model utilizing a stochastic framework based on Levenberg-Marquardt backpropagation neural networks (LVMBPNNs). The nonlinear model depends upon three dynamics, prey, predator, and the impact of the recent past. Three different cases based on the delay differential system with the Holling 3rd type of the functional response have been used to solve through the proposed LVMBPNNs solver. The statistic computing framework is provided by selecting 12%, 11%, and 77% for training, testing, and verification. Thirteen numbers of neurons have been used based… More >

  • Open Access

    ARTICLE

    Two-Stream Deep Learning Architecture-Based Human Action Recognition

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5931-5949, 2023, DOI:10.32604/cmc.2023.028743
    Abstract Human action recognition (HAR) based on Artificial intelligence reasoning is the most important research area in computer vision. Big breakthroughs in this field have been observed in the last few years; additionally, the interest in research in this field is evolving, such as understanding of actions and scenes, studying human joints, and human posture recognition. Many HAR techniques are introduced in the literature. Nonetheless, the challenge of redundant and irrelevant features reduces recognition accuracy. They also faced a few other challenges, such as differing perspectives, environmental conditions, and temporal variations, among others. In this work, a deep learning and improved… More >

  • Open Access

    ARTICLE

    A Credit Card Fraud Model Prediction Method Based on Penalty Factor Optimization AWTadaboost

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5951-5965, 2023, DOI:10.32604/cmc.2023.035558
    Abstract With the popularity of online payment, how to perform credit card fraud detection more accurately has also become a hot issue. And with the emergence of the adaptive boosting algorithm (Adaboost), credit card fraud detection has started to use this method in large numbers, but the traditional Adaboost is prone to overfitting in the presence of noisy samples. Therefore, in order to alleviate this phenomenon, this paper proposes a new idea: using the number of consecutive sample misclassifications to determine the noisy samples, while constructing a penalty factor to reconstruct the sample weight assignment. Firstly, the theoretical analysis shows that… More >

  • Open Access

    ARTICLE

    CE-EEN-B0: Contour Extraction Based Extended EfficientNet-B0 for Brain Tumor Classification Using MRI Images

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5967-5982, 2023, DOI:10.32604/cmc.2023.033920
    Abstract A brain tumor is the uncharacteristic progression of tissues in the brain. These are very deadly, and if it is not diagnosed at an early stage, it might shorten the affected patient’s life span. Hence, their classification and detection play a critical role in treatment. Traditional Brain tumor detection is done by biopsy which is quite challenging. It is usually not preferred at an early stage of the disease. The detection involves Magnetic Resonance Imaging (MRI), which is essential for evaluating the tumor. This paper aims to identify and detect brain tumors based on their location in the brain. In… More >

  • Open Access

    ARTICLE

    Compact 5G Vivaldi Tapered Slot Filtering Antenna with Enhanced Bandwidth

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5983-5999, 2023, DOI:10.32604/cmc.2023.035585
    Abstract Compact fifth-generation (5G) low-frequency band filtering antennas (filtennas) with stable directive radiation patterns, improved bandwidth (BW), and gain are designed, fabricated, and tested in this research. The proposed filtennas are achieved by combining the predesigned compact 5G (5.975 – 7.125 GHz) third-order uniform and non-uniform transmission line hairpin bandpass filters (UTL and NTL HPBFs) with the compact ultrawide band Vivaldi tapered slot antenna (UWB VTSA) in one module. The objective of this integration is to enhance the performance of 5.975 – 7.125 GHz filtennas which will be suitable for modern mobile communication applications by exploiting the benefits of UWB VTSA. Based on… More >

  • Open Access

    ARTICLE

    Drift Detection Method Using Distance Measures and Windowing Schemes for Sentiment Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6001-6017, 2023, DOI:10.32604/cmc.2023.035221
    Abstract Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products. Due to changes in data distribution, commonly referred to as concept drift, mining this data stream is a challenging problem for researchers. The majority of the existing drift detection techniques are based on classification errors, which have higher probabilities of false-positive or missed detections. To improve classification accuracy, there is a need to develop more intuitive detection techniques that can identify a great number of drifts in the data streams. This paper presents an adaptive unsupervised learning technique,… More >

  • Open Access

    ARTICLE

    IoT Based Smart Framework Monitoring System for Power Station

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6019-6037, 2023, DOI:10.32604/cmc.2023.032791
    Abstract Power Station (PS) monitoring systems are becoming critical, ensuring electrical safety through early warning, and in the event of a PS fault, the power supply is quickly disconnected. Traditional technologies are based on relays and don’t have a way to capture and store user data when there is a problem. The proposed framework is designed with the goal of providing smart environments for protecting electrical types of equipment. This paper proposes an Internet of Things (IoT)-based Smart Framework (SF) for monitoring the Power Devices (PD) which are being used in power substations. A Real-Time Monitoring (RTM) system is proposed, and… More >

  • Open Access

    ARTICLE

    Gait Image Classification Using Deep Learning Models for Medical Diagnosis

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6039-6063, 2023, DOI:10.32604/cmc.2023.032331
    Abstract Gait refers to a person’s particular movements and stance while moving around. Although each person’s gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring the progress of a patient… More >

  • Open Access

    ARTICLE

    Dataset of Large Gathering Images for Person Identification and Tracking

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6065-6080, 2023, DOI:10.32604/cmc.2023.035012
    Abstract This paper presents a large gathering dataset of images extracted from publicly filmed videos by 24 cameras installed on the premises of Masjid Al-Nabvi, Madinah, Saudi Arabia. This dataset consists of raw and processed images reflecting a highly challenging and unconstraint environment. The methodology for building the dataset consists of four core phases; that include acquisition of videos, extraction of frames, localization of face regions, and cropping and resizing of detected face regions. The raw images in the dataset consist of a total of 4613 frames obtained from video sequences. The processed images in the dataset consist of the face… More >

  • Open Access

    ARTICLE

    Squirrel Search Optimization with Deep Convolutional Neural Network for Human Pose Estimation

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6081-6099, 2023, DOI:10.32604/cmc.2023.034654
    Abstract Human pose estimation (HPE) is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision (CV) communities. HPE finds its applications in several fields namely activity recognition and human-computer interface. Despite the benefits of HPE, it is still a challenging process due to the variations in visual appearances, lighting, occlusions, dimensionality, etc. To resolve these issues, this paper presents a squirrel search optimization with a deep convolutional neural network for HPE (SSDCNN-HPE) technique. The major intention of the SSDCNN-HPE technique is to identify the human pose accurately and efficiently.… More >

  • Open Access

    ARTICLE

    Chaotic Metaheuristics with Multi-Spiking Neural Network Based Cloud Intrusion Detection

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6101-6118, 2023, DOI:10.32604/cmc.2023.033677
    Abstract Cloud Computing (CC) provides data storage options as well as computing services to its users through the Internet. On the other hand, cloud users are concerned about security and privacy issues due to the increased number of cyberattacks. Data protection has become an important issue since the users’ information gets exposed to third parties. Computer networks are exposed to different types of attacks which have extensively grown in addition to the novel intrusion methods and hacking tools. Intrusion Detection Systems (IDSs) can be used in a network to manage suspicious activities. These IDSs monitor the activities of the CC environment… More >

  • Open Access

    ARTICLE

    A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6119-6143, 2023, DOI:10.32604/cmc.2023.035743
    Abstract The prediction of processor performance has important reference significance for future processors. Both the accuracy and rationality of the prediction results are required. The hierarchical belief rule base (HBRB) can initially provide a solution to low prediction accuracy. However, the interpretability of the model and the traceability of the results still warrant further investigation. Therefore, a processor performance prediction method based on interpretable hierarchical belief rule base (HBRB-I) and global sensitivity analysis (GSA) is proposed. The method can yield more reliable prediction results. Evidence reasoning (ER) is firstly used to evaluate the historical data of the processor, followed by a… More >

  • Open Access

    ARTICLE

    Application of Deep Learning to Production Forecasting in Intelligent Agricultural Product Supply Chain

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6145-6159, 2023, DOI:10.32604/cmc.2023.034833
    Abstract Production prediction is an important factor influencing the realization of an intelligent agricultural supply chain. In an Internet of Things (IoT) environment, accurate yield prediction is one of the prerequisites for achieving an efficient response in an intelligent agricultural supply chain. As an example, this study applied a conventional prediction method and deep learning prediction model to predict the yield of a characteristic regional fruit (the Shatian pomelo) in a comparative study. The root means square error (RMSE) values of regression analysis, exponential smoothing, grey prediction, grey neural network, support vector regression (SVR), and long short-term memory (LSTM) neural network… More >

  • Open Access

    ARTICLE

    A Novel Efficient Patient Monitoring FER System Using Optimal DL-Features

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6161-6175, 2023, DOI:10.32604/cmc.2023.032505
    Abstract Automated Facial Expression Recognition (FER) serves as the backbone of patient monitoring systems, security, and surveillance systems. Real-time FER is a challenging task, due to the uncontrolled nature of the environment and poor quality of input frames. In this paper, a novel FER framework has been proposed for patient monitoring. Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation. Two lightweight efficient Convolution Neural Network (CNN) models MobileNetV2 and Neural search Architecture Network Mobile (NasNetMobile) are trained, and feature vectors are extracted. The Whale Optimization Algorithm (WOA) is utilized to remove irrelevant features from these… More >

  • Open Access

    ARTICLE

    Visual News Ticker Surveillance Approach from Arabic Broadcast Streams

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6177-6193, 2023, DOI:10.32604/cmc.2023.034669
    Abstract The news ticker is a common feature of many different news networks that display headlines and other information. News ticker recognition applications are highly valuable in e-business and news surveillance for media regulatory authorities. In this paper, we focus on the automatic Arabic Ticker Recognition system for the Al-Ekhbariya news channel. The primary emphasis of this research is on ticker recognition methods and storage schemes. To that end, the research is aimed at character-wise explicit segmentation using a semantic segmentation technique and words identification method. The proposed learning architecture considers the grouping of homogeneous-shaped classes. This incorporates linguistic taxonomy in… More >

  • Open Access

    ARTICLE

    Chaotic Flower Pollination with Deep Learning Based COVID-19 Classification Model

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6195-6212, 2023, DOI:10.32604/cmc.2023.033252
    Abstract The Coronavirus Disease (COVID-19) pandemic has exposed the vulnerabilities of medical services across the globe, especially in underdeveloped nations. In the aftermath of the COVID-19 outbreak, a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods. Medical imaging has become a crucial component in the disease diagnosis process, whereas X-rays and Computed Tomography (CT) scan imaging are employed in a deep network to diagnose the diseases. In general, four steps are followed in image-based diagnostics and disease classification processes by making use of… More >

  • Open Access

    ARTICLE

    3D Face Reconstruction from a Single Image Using a Combined PCA-LPP Method

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6213-6227, 2023, DOI:10.32604/cmc.2023.035344
    Abstract In this paper, we proposed a combined PCA-LPP algorithm to improve 3D face reconstruction performance. Principal component analysis (PCA) is commonly used to compress images and extract features. One disadvantage of PCA is local feature loss. To address this, various studies have proposed combining a PCA-LPP-based algorithm with a locality preserving projection (LPP). However, the existing PCA-LPP method is unsuitable for 3D face reconstruction because it focuses on data classification and clustering. In the existing PCA-LPP, the adjacency graph, which primarily shows the connection relationships between data, is composed of the e-or k-nearest neighbor techniques. By contrast, in this study,… More >

  • Open Access

    ARTICLE

    Efficient Gait Analysis Using Deep Learning Techniques

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6229-6249, 2023, DOI:10.32604/cmc.2023.032273
    Abstract Human Activity Recognition (HAR) has always been a difficult task to tackle. It is mainly used in security surveillance, human-computer interaction, and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things (IoT). Human Activity Recognition data can be recorded with the help of sensors, images, or smartphones. Recognizing daily routine-based human activities such as walking, standing, sitting, etc., could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network (2D CNN) MODEL, Long Short Term Memory (LSTM) Model, Bidirectional long short-term memory (Bi-LSTM) are used… More >

  • Open Access

    ARTICLE

    Design of Ka-Band Phased Array Antenna with Calibration Function

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6251-6261, 2023, DOI:10.32604/cmc.2023.027114
    Abstract In this paper, we have proposed a novel structure of Ka-band based phased array antenna with calibration function. In the design of Ka-band antenna, the active phased array system is adopted and the antenna would work in the dual polarization separation mode. We have given out the schematic diagram for the proposed Ka-band antenna, where the Ka-band antenna is in the form of waveguide slot array antenna, with 96 units in azimuth and 1 unit in distance. Each group of units is driven by a single-channel Transmitter/Receiver (T/R) component, and the whole array contains 192 T/R components in total. The… More >

  • Open Access

    ARTICLE

    Indirect Vector Control of Linear Induction Motors Using Space Vector Pulse Width Modulation

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6263-6287, 2023, DOI:10.32604/cmc.2023.033027
    Abstract Vector control schemes have recently been used to drive linear induction motors (LIM) in high-performance applications. This trend promotes the development of precise and efficient control schemes for individual motors. This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation (SVPWM) inverters. The framework under consideration is developed in four stages. To begin, MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamic model. The research presents a modified SVPWM inverter control scheme. By tuning the proportional-integral (PI) controller with a transfer function, optimized values for… More >

  • Open Access

    ARTICLE

    Performance Framework for Virtual Machine Migration in Cloud Computing

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6289-6305, 2023, DOI:10.32604/cmc.2023.035161
    Abstract In the cloud environment, the transfer of data from one cloud server to another cloud server is called migration. Data can be delivered in various ways, from one data centre to another. This research aims to increase the migration performance of the virtual machine (VM) in the cloud environment. VMs allow cloud customers to store essential data and resources. However, server usage has grown dramatically due to the virtualization of computer systems, resulting in higher data centre power consumption, storage needs, and operating expenses. Multiple VMs on one data centre manage share resources like central processing unit (CPU) cache, network… More >

  • Open Access

    ARTICLE

    Functional Nonparametric Predictions in Food Industry Using Near-Infrared Spectroscopy Measurement

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6307-6319, 2023, DOI:10.32604/cmc.2023.033441
    Abstract Functional statistics is a new technique for dealing with data that can be viewed as curves or images. Parallel to this approach, the Near-Infrared Reflectance (NIR) spectroscopy methodology has been used in modern chemistry as a rapid, low-cost, and exact means of assessing an object’s chemical properties. In this research, we investigate the quality of corn and cookie dough by analyzing the spectroscopic technique using certain cutting-edge statistical models. By analyzing spectral data and applying functional models to it, we could predict the chemical components of corn and cookie dough. Kernel Functional Classical Estimation (KFCE), Kernel Functional Quantile Estimation (KFQE),… More >

  • Open Access

    ARTICLE

    An Optimized Offloaded Task Execution for Smart Cities Applications

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6321-6334, 2023, DOI:10.32604/cmc.2023.029913
    Abstract Wireless nodes are one of the main components in different applications that are offered in a smart city. These wireless nodes are responsible to execute multiple tasks with different priority levels. As the wireless nodes have limited processing capacity, they offload their tasks to cloud servers if the number of tasks exceeds their task processing capacity. Executing these tasks from remotely placed cloud servers causes a significant delay which is not required in sensitive task applications. This execution delay is reduced by placing fog computing nodes near these application nodes. A fog node has limited processing capacity and is sometimes… More >

  • Open Access

    ARTICLE

    Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6335-6349, 2023, DOI:10.32604/cmc.2023.033860
    Abstract Malaria is a lethal disease responsible for thousands of deaths worldwide every year. Manual methods of malaria diagnosis are time-consuming that require a great deal of human expertise and efforts. Computer-based automated diagnosis of diseases is progressively becoming popular. Although deep learning models show high performance in the medical field, it demands a large volume of data for training which is hard to acquire for medical problems. Similarly, labeling of medical images can be done with the help of medical experts only. Several recent studies have utilized deep learning models to develop efficient malaria diagnostic system, which showed promising results.… More >

  • Open Access

    ARTICLE

    Integrating WSN and Laser SLAM for Mobile Robot Indoor Localization

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6351-6369, 2023, DOI:10.32604/cmc.2023.035832
    Abstract Localization plays a vital role in the mobile robot navigation system and is a fundamental capability for the following path planning task. In an indoor environment where the global positioning system signal fails or becomes weak, the wireless sensor network (WSN) or simultaneous localization and mapping (SLAM) scheme gradually becomes a research hot spot. WSN method uses received signal strength indicator (RSSI) values to determine the position of the target signal node, however, the orientation of the target node is not clear. Besides, the distance error is large when the indoor signal receives interference. The laser SLAM-based method usually uses… More >

  • Open Access

    ARTICLE

    New Trends in Fuzzy Modeling Through Numerical Techniques

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6371-6388, 2023, DOI:10.32604/cmc.2023.033553
    Abstract Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica. It is spread through person-to-person contact or by eating or drinking food or water contaminated with feces. Its transmission rate depends on the number of cysts present in the environment. The traditional models assumed a homogeneous and contradictory transmission with reality. The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics. The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory. In this context, a fuzzy SEIR Amoebiasis disease model is considered in this study. The equilibrium analysis and… More >

  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory Model for Digital Cross-Language Summarization

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6389-6409, 2023, DOI:10.32604/cmc.2023.034072
    Abstract The rise of social networking enables the development of multilingual Internet-accessible digital documents in several languages. The digital document needs to be evaluated physically through the Cross-Language Text Summarization (CLTS) involved in the disparate and generation of the source documents. Cross-language document processing is involved in the generation of documents from disparate language sources toward targeted documents. The digital documents need to be processed with the contextual semantic data with the decoding scheme. This paper presented a multilingual cross-language processing of the documents with the abstractive and summarising of the documents. The proposed model is represented as the Hidden Markov… More >

  • Open Access

    ARTICLE

    A Novel Design of Antenna Array with Two K-Band Circularly Polarized Antenna

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6411-6427, 2023, DOI:10.32604/cmc.2023.027124
    Abstract As an important part of phased array system, the research on phased array antenna is very necessary. The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array element. In this paper, a dual K-band circularly polarized antenna with high broadband, broadband beam, wide axial ratio bandwidth and high radiation efficiency is designed. We combine with the advantages of slot antenna and aperture antenna, use multimode waveguide cavity structure to design an aperture antenna, which is fed to waveguide circular polarizer by slot coupling in order to realize circular polarization radiation. Meanwhile, it has… More >

  • Open Access

    ARTICLE

    DNA Computing with Water Strider Based Vector Quantization for Data Storage Systems

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6429-6444, 2023, DOI:10.32604/cmc.2023.031817
    Abstract The exponential growth of data necessitates an effective data storage scheme, which helps to effectively manage the large quantity of data. To accomplish this, Deoxyribonucleic Acid (DNA) digital data storage process can be employed, which encodes and decodes binary data to and from synthesized strands of DNA. Vector quantization (VQ) is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency. This article introduces a new DNA Computing with Water Strider Algorithm based Vector Quantization (DNAC-WSAVQ) technique for Data Storage Systems. The proposed DNAC-WSAVQ technique enables encoding data using… More >

  • Open Access

    ARTICLE

    Six Generation Load Cells Solution Based Congestion Management Control Purpose

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6445-6460, 2023, DOI:10.32604/cmc.2023.026441
    Abstract Several assessing efforts are approved making both communication and information technologies available. In addition to being a part of universal access and service, we aim at assessing the impact of radio access technologies on universal access indicators. The proposed work demonstrates the possibility of inter-working of all existing Radio Access Technologies (RATs), in a limited area presented in the Six Generation Radio Resources Allocation (6 G-A) network. We propose a solution for the Vertical hand Over (VHO) in 6 G-A heterogeneous system, that adopts Media Independent Handover (MIH) protocol to benefit between different used technologies in a direct communication firstly… More >

  • Open Access

    ARTICLE

    Optimization Techniques in University Timetabling Problem: Constraints, Methodologies, Benchmarks, and Open Issues

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6461-6484, 2023, DOI:10.32604/cmc.2023.034051
    Abstract University timetabling problems are a yearly challenging task and are faced repeatedly each semester. The problems are considered non-polynomial time (NP) and combinatorial optimization problems (COP), which means that they can be solved through optimization algorithms to produce the aspired optimal timetable. Several techniques have been used to solve university timetabling problems, and most of them use optimization techniques. This paper provides a comprehensive review of the most recent studies dealing with concepts, methodologies, optimization, benchmarks, and open issues of university timetabling problems. The comprehensive review starts by presenting the essence of university timetabling as NP-COP, defining and clarifying the… More >

  • Open Access

    ARTICLE

    Bridge Crack Segmentation Method Based on Parallel Attention Mechanism and Multi-Scale Features Fusion

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6485-6503, 2023, DOI:10.32604/cmc.2023.035165
    Abstract Regular inspection of bridge cracks is crucial to bridge maintenance and repair. The traditional manual crack detection methods are time-consuming, dangerous and subjective. At the same time, for the existing mainstream vision-based automatic crack detection algorithms, it is challenging to detect fine cracks and balance the detection accuracy and speed. Therefore, this paper proposes a new bridge crack segmentation method based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+ network framework. First, the improved lightweight MobileNet-v2 network and dilated separable convolution are integrated into the original DeeplabV3+ network to improve the original backbone network Xception… More >

  • Open Access

    ARTICLE

    Lightning Search Algorithm with Deep Transfer Learning-Based Vehicle Classification

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6505-6521, 2023, DOI:10.32604/cmc.2023.033422
    Abstract There is a drastic increase experienced in the production of vehicles in recent years across the globe. In this scenario, vehicle classification system plays a vital part in designing Intelligent Transportation Systems (ITS) for automatic highway toll collection, autonomous driving, and traffic management. Recently, computer vision and pattern recognition models are useful in designing effective vehicle classification systems. But these models are trained using a small number of hand-engineered features derived from small datasets. So, such models cannot be applied for real-time road traffic conditions. Recent developments in Deep Learning (DL)-enabled vehicle classification models are highly helpful in resolving the… More >

  • Open Access

    ARTICLE

    Novel Scheme for Robust Confusion Component Selection Based on Pythagorean Fuzzy Set

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6523-6534, 2023, DOI:10.32604/cmc.2022.031859
    Abstract The substitution box, often known as an S-box, is a nonlinear component that is a part of several block ciphers. Its purpose is to protect cryptographic algorithms from a variety of cryptanalytic assaults. A MultiCriteria Decision Making (MCDM) problem has a complex selection procedure because of having many options and criteria to choose from. Because of this, statistical methods are necessary to assess the performance score of each S-box and decide which option is the best one available based on this score. Using the Pythagorean Fuzzy-based Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method, the major… More >

  • Open Access

    ARTICLE

    A Query-Based Greedy Approach for Authentic Influencer Discovery in SIoT

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6535-6553, 2023, DOI:10.32604/cmc.2023.033832
    Abstract The authors propose an informed search greedy approach that efficiently identifies the influencer nodes in the social Internet of Things with the ability to provide legitimate information. Primarily, the proposed approach minimizes the network size and eliminates undesirable connections. For that, the proposed approach ranks each of the nodes and prioritizes them to identify an authentic influencer. Therefore, the proposed approach discards the nodes having a rank (α) lesser than 0.5 to reduce the network complexity. α is the variable value represents the rank of each node that varies between 0 to 1. Node with the higher value of α… More >

  • Open Access

    ARTICLE

    A Novel 2D Hyperchaotic with a Complex Dynamic Behavior for Color Image Encryption

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6555-6571, 2023, DOI:10.32604/cmc.2023.036090
    Abstract The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem. The classical chaotic map has simple dynamic behavior and few control parameters, so it is not suitable for modern cryptography. In this paper, we design a new 2D hyperchaotic system called 2D simple structure and complex dynamic behavior map (2D-SSCDB). The 2D-SSCDB has a simple structure but has complex dynamic behavior. The Lyapunov exponent verifies that the 2D-SSCDB has hyperchaotic behavior, and the parameter space in the hyperchaotic state is extensive and continuous. Trajectory analysis and some randomness tests verify that… More >

  • Open Access

    ARTICLE

    Explainable Anomaly Detection Using Vision Transformer Based SVDD

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6573-6586, 2023, DOI:10.32604/cmc.2023.035246
    Abstract Explainable AI extracts a variety of patterns of data in the learning process and draws hidden information through the discovery of semantic relationships. It is possible to offer the explainable basis of decision-making for inference results. Through the causality of risk factors that have an ambiguous association in big medical data, it is possible to increase transparency and reliability of explainable decision-making that helps to diagnose disease status. In addition, the technique makes it possible to accurately predict disease risk for anomaly detection. Vision transformer for anomaly detection from image data makes classification through MLP. Unfortunately, in MLP, a vector… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Driven Intrusion Detection in SDN-Enabled IoT Environment

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6587-6604, 2023, DOI:10.32604/cmc.2023.034176
    Abstract In recent years, wireless networks are widely used in different domains. This phenomenon has increased the number of Internet of Things (IoT) devices and their applications. Though IoT has numerous advantages, the commonly-used IoT devices are exposed to cyber-attacks periodically. This scenario necessitates real-time automated detection and the mitigation of different types of attacks in high-traffic networks. The Software-Defined Networking (SDN) technique and the Machine Learning (ML)-based intrusion detection technique are effective tools that can quickly respond to different types of attacks in the IoT networks. The Intrusion Detection System (IDS) models can be employed to secure the SDN-enabled IoT… More >

  • Open Access

    ARTICLE

    A Novel Secure Scan Design Based on Delayed Physical Unclonable Function

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6605-6622, 2023, DOI:10.32604/cmc.2023.031617
    Abstract The advanced integrated circuits have been widely used in various situations including the Internet of Things, wireless communication, etc. But its manufacturing process exists unreliability, so cryptographic chips must be rigorously tested. Due to scan testing provides high test coverage, it is applied to the testing of cryptographic integrated circuits. However, while providing good controllability and observability, it also provides attackers with a backdoor to steal keys. In the text, a novel protection scheme is put forward to resist scan-based attacks, in which we first use the responses generated by a strong physical unclonable function circuit to solidify fuse-antifuse structures… More >

  • Open Access

    ARTICLE

    Telepresence Robots and Controlling Techniques in Healthcare System

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6623-6639, 2023, DOI:10.32604/cmc.2023.035218
    Abstract In this era of post-COVID-19, humans are psychologically restricted to interact less with other humans. According to the world health organization (WHO), there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide. Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment. Investigations were done to overcome the remedy, and the researcher developed different techniques and recommended solutions. Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans. It played a vital role in… More >

  • Open Access

    ARTICLE

    Measuring Reliability of A Web Portal Based on Testing Profile

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6641-6663, 2023, DOI:10.32604/cmc.2023.031459
    Abstract

    Conventionally, the reliability of a web portal is validated with generalized conventional methods, but they fail to provide the desired results. Therefore, we need to include other quality factors that affect reliability such as usability for improving the reliability in addition to the conventional reliability testing. Actually, the primary objectives of web portals are to provide interactive integration of multiple functions confirming diverse requirements in an efficient way. In this paper, we employ testing profiles to measure the reliability through software operational profile, input space profile and usability profile along with qualitative measures of reliability and usability. Moreover, the case… More >

  • Open Access

    ARTICLE

    EsECC_SDN: Attack Detection and Classification Model for MANET

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6665-6688, 2023, DOI:10.32604/cmc.2023.032140
    Abstract Mobile Ad Hoc Networks (MANET) is the framework for social networking with a realistic framework. In the MANET environment, based on the query, information is transmitted between the sender and receiver. In the MANET network, the nodes within the communication range are involved in data transmission. Even the nodes that lie outside of the communication range are involved in the transmission of relay messages. However, due to the openness and frequent mobility of nodes, they are subjected to the vast range of security threats in MANET. Hence, it is necessary to develop an appropriate security mechanism for the data MANET… More >

  • Open Access

    ARTICLE

    Impediments of Cognitive System Engineering in Machine-Human Modeling

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6689-6701, 2023, DOI:10.32604/cmc.2023.032998
    Abstract A comprehensive understanding of human intelligence is still an ongoing process, i.e., human and information security are not yet perfectly matched. By understanding cognitive processes, designers can design humanized cognitive information systems (CIS). The need for this research is justified because today’s business decision makers are faced with questions they cannot answer in a given amount of time without the use of cognitive information systems. The researchers aim to better strengthen cognitive information systems with more pronounced cognitive thresholds by demonstrating the resilience of cognitive resonant frequencies to reveal possible responses to improve the efficiency of human-computer interaction (HCI). A… More >

  • Open Access

    ARTICLE

    Securing 3D Point and Mesh Fog Data Using Novel Chaotic Cat Map

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6703-6717, 2023, DOI:10.32604/cmc.2023.030648
    Abstract With the rapid evolution of Internet technology, fog computing has taken a major role in managing large amounts of data. The major concerns in this domain are security and privacy. Therefore, attaining a reliable level of confidentiality in the fog computing environment is a pivotal task. Among different types of data stored in the fog, the 3D point and mesh fog data are increasingly popular in recent days, due to the growth of 3D modelling and 3D printing technologies. Hence, in this research, we propose a novel scheme for preserving the privacy of 3D point and mesh fog data. Chaotic… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Driven Automated Fall Detection for Quality of Living of Disabled Persons

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6719-6736, 2023, DOI:10.32604/cmc.2023.034417
    Abstract Mobile communication and the Internet of Things (IoT) technologies have recently been established to collect data from human beings and the environment. The data collected can be leveraged to provide intelligent services through different applications. It is an extreme challenge to monitor disabled people from remote locations. It is because day-to-day events like falls heavily result in accidents. For a person with disabilities, a fall event is an important cause of mortality and post-traumatic complications. Therefore, detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival… More >

  • Open Access

    ARTICLE

    Optimal Fuzzy Logic Enabled Intrusion Detection for Secure IoT-Cloud Environment

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6737-6753, 2023, DOI:10.32604/cmc.2023.032591
    Abstract Recently, Internet of Things (IoT) devices have developed at a faster rate and utilization of devices gets considerably increased in day to day lives. Despite the benefits of IoT devices, security issues remain challenging owing to the fact that most devices do not include memory and computing resources essential for satisfactory security operation. Consequently, IoT devices are vulnerable to different kinds of attacks. A single attack on networking system/device could result in considerable data to data security and privacy. But the emergence of artificial intelligence (AI) techniques can be exploited for attack detection and classification in the IoT environment. In… More >

  • Open Access

    ARTICLE

    Fault Coverage-Based Test Case Prioritization and Selection Using African Buffalo Optimization

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6755-6774, 2023, DOI:10.32604/cmc.2023.032308
    Abstract Software needs modifications and requires revisions regularly. Owing to these revisions, retesting software becomes essential to ensure that the enhancements made, have not affected its bug-free functioning. The time and cost incurred in this process, need to be reduced by the method of test case selection and prioritization. It is observed that many nature-inspired techniques are applied in this area. African Buffalo Optimization is one such approach, applied to regression test selection and prioritization. In this paper, the proposed work explains and proves the applicability of the African Buffalo Optimization approach to test case selection and prioritization. The proposed algorithm… More >

  • Open Access

    ARTICLE

    Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6775-6788, 2023, DOI:10.32604/cmc.2023.030814
    Abstract Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The presented SSAMLT-BTS model initially employs… More >

  • Open Access

    ARTICLE

    An Optimized Test Case Minimization Technique Using Genetic Algorithm for Regression Testing

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6789-6806, 2023, DOI:10.32604/cmc.2023.028625
    Abstract Regression testing is a widely used approach to confirm the correct functionality of the software in incremental development. The use of test cases makes it easier to test the ripple effect of changed requirements. Rigorous testing may help in meeting the quality criteria that is based on the conformance to the requirements as given by the intended stakeholders. However, a minimized and prioritized set of test cases may reduce the efforts and time required for testing while focusing on the timely delivery of the software application. In this research, a technique named TestReduce has been presented to get a minimal… More >

  • Open Access

    ARTICLE

    Optimization of Coronavirus Pandemic Model Through Artificial Intelligence

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6807-6822, 2023, DOI:10.32604/cmc.2023.033283
    Abstract Artificial intelligence is demonstrated by machines, unlike the natural intelligence displayed by animals, including humans. Artificial intelligence research has been defined as the field of study of intelligent agents, which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals. The techniques of intelligent computing solve many applications of mathematical modeling. The research work was designed via a particular method of artificial neural networks to solve the mathematical model of coronavirus. The representation of the mathematical model is made via systems of nonlinear ordinary differential equations. These differential equations are established… More >

  • Open Access

    ARTICLE

    Adaptive Resource Planning for AI Workloads with Variable Real-Time Tasks

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6823-6833, 2023, DOI:10.32604/cmc.2023.035481
    Abstract AI (Artificial Intelligence) workloads are proliferating in modern real-time systems. As the tasks of AI workloads fluctuate over time, resource planning policies used for traditional fixed real-time tasks should be re-examined. In particular, it is difficult to immediately handle changes in real-time tasks without violating the deadline constraints. To cope with this situation, this paper analyzes the task situations of AI workloads and finds the following two observations. First, resource planning for AI workloads is a complicated search problem that requires much time for optimization. Second, although the task set of an AI workload may change over time, the possible… More >

  • Open Access

    ARTICLE

    Topic Modelling and Sentimental Analysis of Students’ Reviews

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6835-6848, 2023, DOI:10.32604/cmc.2023.034987
    Abstract Globally, educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic. The fundamental concern has been the continuance of education. As a result, several novel solutions have been developed to address technical and pedagogical issues. However, these were not the only difficulties that students faced. The implemented solutions involved the operation of the educational process with less regard for students’ changing circumstances, which obliged them to study from home. Students should be asked to provide a full list of their concerns. As a result, student reflections, including those from Saudi Arabia, have… More >

  • Open Access

    ARTICLE

    A Coprocessor Architecture for 80/112-bit Security Related Applications

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6849-6865, 2023, DOI:10.32604/cmc.2023.032849
    Abstract We have proposed a flexible coprocessor key-authentication architecture for 80/112-bit security-related applications over field by employing Elliptic-curve Diffie Hellman (ECDH) protocol. Towards flexibility, a serial input/output interface is used to load/produce secret, public, and shared keys sequentially. Moreover, to reduce the hardware resources and to achieve a reasonable time for cryptographic computations, we have proposed a finite field digit-serial multiplier architecture using combined shift and accumulate techniques. Furthermore, two finite-state-machine controllers are used to perform efficient control functionalities. The proposed coprocessor architecture over and is programmed using Verilog and then implemented on Xilinx Virtex-7 FPGA (field-programmable-gate-array) device. For and ,… More >

  • Open Access

    ARTICLE

    IoMT-Based Healthcare Framework for Ambient Assisted Living Using a Convolutional Neural Network

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6867-6878, 2023, DOI:10.32604/cmc.2023.034952
    Abstract In the age of universal computing, human life is becoming smarter owing to the recent developments in the Internet of Medical Things (IoMT), wearable sensors, and telecommunication innovations, which provide more effective and smarter healthcare facilities. IoMT has the potential to shape the future of clinical research in the healthcare sector. Wearable sensors, patients, healthcare providers, and caregivers can connect through an IoMT network using software, information, and communication technology. Ambient assisted living (AAL) allows the incorporation of emerging innovations into the routine life events of patients. Machine learning (ML) teaches machines to learn from human experiences and to use… More >

  • Open Access

    ARTICLE

    Aspect Extraction Approach for Sentiment Analysis Using Keywords

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6879-6892, 2023, DOI:10.32604/cmc.2023.034214
    Abstract Sentiment Analysis deals with consumer reviews available on blogs, discussion forums, E-commerce websites, and App Store. These online reviews about products are also becoming essential for consumers and companies as well. Consumers rely on these reviews to make their decisions about products and companies are also very interested in these reviews to judge their products and services. These reviews are also a very precious source of information for requirement engineers. But companies and consumers are not very satisfied with the overall sentiment; they like fine-grained knowledge about consumer reviews. Owing to this, many researchers have developed approaches for aspect-based sentiment… More >

  • Open Access

    ARTICLE

    Mathematical Morphology View of Topological Rough Sets and Its Applications

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6893-6908, 2023, DOI:10.32604/cmc.2023.033539
    Abstract This article focuses on the relationship between mathematical morphology operations and rough sets, mainly based on the context of image retrieval and the basic image correspondence problem. Mathematical morphological procedures and set approximations in rough set theory have some clear parallels. Numerous initiatives have been made to connect rough sets with mathematical morphology. Numerous significant publications have been written in this field. Others attempt to show a direct connection between mathematical morphology and rough sets through relations, a pair of dual operations, and neighborhood systems. Rough sets are used to suggest a strategy to approximate mathematical morphology within the general… More >

  • Open Access

    ARTICLE

    Xception-Fractalnet: Hybrid Deep Learning Based Multi-Class Classification of Alzheimer’s Disease

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6909-6932, 2023, DOI:10.32604/cmc.2023.034796
    Abstract Neurological disorders such as Alzheimer’s disease (AD) are very challenging to treat due to their sensitivity, technical challenges during surgery, and high expenses. The complexity of the brain structures makes it difficult to distinguish between the various brain tissues and categorize AD using conventional classification methods. Furthermore, conventional approaches take a lot of time and might not always be precise. Hence, a suitable classification framework with brain imaging may produce more accurate findings for early diagnosis of AD. Therefore in this paper, an effective hybrid Xception and Fractalnet-based deep learning framework are implemented to classify the stages of AD into… More >

Share Link

WeChat scan