Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

XGBoost Algorithm under Differential Privacy Protection

Yuanmin Shi1,2, Siran Yin1,2, Ze Chen1,2, Leiming Yan1,2,*

1 School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, China
2 Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing, China

* Corresponding Author: Leiming Yan. Email: email

Journal of Information Hiding and Privacy Protection 2021, 3(1), 9-16. https://doi.org/10.32604/jihpp.2021.012193

Abstract

Privacy protection is a hot research topic in information security field. An improved XGBoost algorithm is proposed to protect the privacy in classification tasks. By combining with differential privacy protection, the XGBoost can improve the classification accuracy while protecting privacy information. When using CART regression tree to build a single decision tree, noise is added according to Laplace mechanism. Compared with random forest algorithm, this algorithm can reduce computation cost and prevent overfitting to a certain extent. The experimental results show that the proposed algorithm is more effective than other traditional algorithms while protecting the privacy information in training data.

Keywords


Cite This Article

APA Style
Shi, Y., Yin, S., Chen, Z., Yan, L. (2021). Xgboost algorithm under differential privacy protection. Journal of Information Hiding and Privacy Protection, 3(1), 9-16. https://doi.org/10.32604/jihpp.2021.012193
Vancouver Style
Shi Y, Yin S, Chen Z, Yan L. Xgboost algorithm under differential privacy protection. J Inf Hiding Privacy Protection . 2021;3(1):9-16 https://doi.org/10.32604/jihpp.2021.012193
IEEE Style
Y. Shi, S. Yin, Z. Chen, and L. Yan, “XGBoost Algorithm under Differential Privacy Protection,” J. Inf. Hiding Privacy Protection , vol. 3, no. 1, pp. 9-16, 2021. https://doi.org/10.32604/jihpp.2021.012193



cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2178

    View

  • 1235

    Download

  • 0

    Like

Share Link