Home / Journals / ICCES / Vol.32, No.3, 2024
Table of Content
  • Open AccessOpen Access

    PROCEEDINGS

    Optimized Design Study of Subsea Hydrothermal Closed-Loop Heat Collection System Based on Numerical Simulation

    Gaowei Yi1, Da Zhang1,2, Xinyu Liu1, Yan Li1,*
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.011165
    Abstract 1 Introduction
    With dwindling terrestrial energy resources, there's a societal consensus to harness clean, renewable energy. Submarine hydrothermal vents, hosting abundant and unexplored energy potentials, draw international academic scrutiny [1]. Yet, comprehensive research on exploiting their thermal energy systems remains sparse. Existing technologies persist with stability and efficiency challenges. While promising ventures in hydrothermal power generation exist, they grapple with heat loss, instability, limited capacity, and heightened damage susceptibility [2]. This study scrutinizes submarine hydrothermal vents, amalgamating terrestrial closed-loop geothermal technology to resolve challenges and enable efficient energy utilization [3]. Given the complex geology of these… More >

  • Open AccessOpen Access

    PROCEEDINGS

    A Thermodynamically Consistent Phase-Field-Micromechanics Model of Solid-State Sintering with Coupled Diffusion and Diffusion-Induced Shrinkage

    Qingcheng Yang1,*, Arkadz Kirshtein2
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011229
    Abstract Sintering is a pivotal technology for processing ceramic and metallic powders into solid objects. A profound understanding of microstructure evolution during sintering is essential for manufacturing products with tailored properties. While various phase-field models have been proposed to simulate microstructure evolution in solid-state sintering, correctly incorporating the densification assumption—where particles move toward each other by rigid body motion—remains a challenge. The fundamental obstacle lies in the ad hoc treatment of particle motion, where the thermodynamical driving force cannot be derived from the system's free energy. In this work, we present a novel phase-field micromechanics model More >

  • Open AccessOpen Access

    PROCEEDINGS

    Deep-Potential Enabled Multiscale Simulation of Interfacial Thermal Transport in Boron Arsenide Heterostructures

    Jing Wu1, E Zhou1, An Huang1, Hongbin Zhang2, Ming Hu3, Guangzhao Qin1,*
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012552
    Abstract High thermal conductivity substrate plays a significant role for efficient heat dissipation of electronic devices, and it is urgent to optimize the interfacial thermal resistance. As a novel material with ultra-high thermal conductivity second only to diamond, boron arsenide (BAs) shows promising applications in electronics cooling [1,2]. By adopting multi-scale simulation method driven by machine learning potential, we systematically study the thermal transport properties of boron arsenide, and further investigate the interfacial thermal transport in the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m-2K-1 is achieved, which agrees well with experimental measurements, and the More >

Per Page:

Share Link