Table of Content

Open Access iconOpen Access

PROCEEDINGS

crossmark

Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

by

1 Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China

* Corresponding Author: Qi Tong. Email: email

The International Conference on Computational & Experimental Engineering and Sciences 2023, 27(3), 1-1. https://doi.org/10.32604/icces.2023.09181

Abstract

Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that geometric parameters such as the size of the nanowire and the thickness of the coating significantly influence the fracture patterns, leading to straight cracks, random crack networks and orthogonal cracks [2]. We also studied fracture-pattern differentiation in film-substrate structures [3], single crystalline electrodes [4], solid electrolyte/electrode interfaces, etc. We reveal the mechanisms by investigating the interplay between mechanical stress and lithium-ion insertion/extraction. The results provide insights into the phenomena of dynamic fracture in complex chemo-mechanical environments and the numerical tool is thus useful in guiding the future design of lithium-ion batteries.

Keywords


Cite This Article

APA Style
Wang, X., Tong, Q. (2023). Chemo-mechanical peridynamic simulation of dynamic fracture-pattern formation in lithium-ion batteries. The International Conference on Computational & Experimental Engineering and Sciences, 27(3), 1-1. https://doi.org/10.32604/icces.2023.09181
Vancouver Style
Wang X, Tong Q. Chemo-mechanical peridynamic simulation of dynamic fracture-pattern formation in lithium-ion batteries. Int Conf Comput Exp Eng Sciences . 2023;27(3):1-1 https://doi.org/10.32604/icces.2023.09181
IEEE Style
X. Wang and Q. Tong, “Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries,” Int. Conf. Comput. Exp. Eng. Sciences , vol. 27, no. 3, pp. 1-1, 2023. https://doi.org/10.32604/icces.2023.09181



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 235

    View

  • 193

    Download

  • 0

    Like

Share Link