Home / Journals / ICCES / Vol.20, No.2, 2011
Table of Content
  • Open AccessOpen Access

    ABSTRACT

    Warpage Measurement of Diamond Coated Grinding Wheel by Shadow MoirAC

    Terry Yuan-Fang Chen, Jian-Siang Chen
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 33-34, 2011, DOI:10.3970/icces.2011.020.033
    Abstract Chemical mechanical planarization (CMP) process flattens the wafer by polishing it against a rotating pad. During the polishing process, a diamond coated grinding wheel must be frequently employed to remove the accumulated debris lest the polishing surface glazes. To assure the flatness of polished wafers during the CMP process, the surface warpage of the diamond grid dresser surface must be small enough. In this study, phase-shifted shadow moirAC method was employed to measure the surface profile of diamond grinding wheel, and the warpage was determined by LSM (lease-squares surface method). Since the impinging light may either be reflect directly or… More >

  • Open AccessOpen Access

    ABSTRACT

    Elastoplastic Phase Field Model for Time-dependent Hydrogen Diffusion, Hydride (and Blister) Formation and Fracture Initiation in Zirconium

    San-Qiang Shi
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 35-36, 2011, DOI:10.3970/icces.2011.020.035
    Abstract Zirconium and its alloys are key structural materials used in the nuclear power industry. In service, these metals are susceptible to a slow corrosion process that leads to a gradual pickup of hydrogen impurities from the environment. It is well known that hydrogen impurity will be attracted to stress concentrators such as notch and crack tips. At a certain hydrogen level, a complicated pattern of hydride precipitates can develop around these stress concentrators. Because of the brittleness of these hydrides, the original strength of the alloys can be reduced by orders of magnitude, and the fracture through these hydrides may… More >

  • Open AccessOpen Access

    ABSTRACT

    Cohesive Elements Compatible with Large Shell Elements for Efficient Composite Delamination Analyses

    Qiao Hua, Wei-Qiu Chen, Qingda Yang
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 37-38, 2011, DOI:10.3970/icces.2011.020.037
    Abstract Predicting arbitrary delamination in laminar composites remains a significant numerical challenge in composite engineering [1,2]. Currently the major technical difficulty is to predict accurately when (at what load level) and where (in which interface) should delamination occur within a pristine composite laminates upon loading. Linear-elastic-fracture-mechanics (LEFM) based methods have limits because 1) requirement of known or assumed initial flaws of finite size, and 2) unknown crack-tip singularity functions for interfaces that bond non-orthogonal plies. Numerical tools based on LEFM such as virtual crack closure technique (VCCT) suffer from serious numerical problems including numerical instability and robustness.
    Cohesive-zone-models (CZM) based simulation… More >

  • Open AccessOpen Access

    ABSTRACT

    Award Keynote Lecture

    I. S. Raju
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 39-40, 2011, DOI:10.3970/icces.2011.020.039
    Abstract Lifetime Achievement Award

    Dr. Ivatury S. Raju

    NASA Engineering and Safety Center

    NASA Langley Research Center, USA

    for his contributions to the Structural Integrity & Durability More >

  • Open AccessOpen Access

    ABSTRACT

    Award Keynote Lecture

    Arunachalam M. Rajendran
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 41-42, 2011, DOI:10.3970/icces.2011.020.041
    Abstract Lifetime Achievement Award

    Professor Arunachalam M. Rajendran

    Department of Mechanical Engineering

    University of Mississippi, USA

    for his contributions to the Impact Behavior of Advanced Materials & Structures More >

  • Open AccessOpen Access

    ABSTRACT

    Solving the Cauchy problem of nonlinear steady-state heat conduction equations by using the polynomial expansion method and the exponentially convergent scalar homotopy method (ECSHA)

    Weichung Yeih, Chia-Min Fan, Zen-Chin Chang,Chen-Yu Ku
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 43-44, 2011, DOI:10.3970/icces.2011.020.043
    Abstract In this paper, the Cauchy problem of the nonlinear steady-state heat conduction is solved by using the polynomial expansion method and the exponentially convergent scalar homotopy method (ECSHA). The nonlinearity involves the thermal dependent conductivity and mixed boundary conditions having radiation term. Unlike the regular boundary conditions, Cauchy data are given on part of the boundary and a sub-boundary without any information exists in the formulation. We assume that the solution for a two-dimensional problem can be expanded by polynomials as: where T is the temperature distribution, np is the maximum order of polynomial expansion, x and y are Cartesian… More >

  • Open AccessOpen Access

    ABSTRACT

    Crack propagation characteristics of a high-ductility steel with layered and graded microstructures

    A.Y.Chen, J. Lu
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 45-46, 2011, DOI:10.3970/icces.2011.020.045
    Abstract The structural reliability of many brittle materials such as nanomaterials relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by crack bridging. The current work examines the role of interface strength and grain size distribution in promoting intergranular fracture in order to maintain high toughening. A layered nanostructural 304SS sheet characterized by periodic distribution of nanocrystalline layers and micron-grained layers with graded grain size evolution has exhibited exceptional properties. The in situ SEM observations illustrate that an intergranular path and the consequent interface bridging process can be partitioned into five distinct regimes, namely:… More >

  • Open AccessOpen Access

    ABSTRACT

    Investigation of the effect of initial stress on the following macro-micro plasticity behavior with finite element & self consistent coupled numerical simulation

    Hongyang Li, Cheng Chen, WeiWei Li, Yanjing Zhang, Xiaopeng Liu, Yandong Wang
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 47-48, 2011, DOI:10.3970/icces.2011.020.047
    Abstract Large numbers of micro lattice plastic deformation of grains set up the macro plastic deformation of polycrystal metallic materials under different macro boundary condition. And the macro homogeneous deformation is in fact the statistical result of micro anisotropic lattice plastic flow. Both of the macro and micro deformation were influenced by intrinsic initial stress, which was intrinsic in the component from micro scale impurity to macro scale non-uniform deformation. In this paper, focused on the engineering application and further damage evaluation, effect of macro initial stress on the macro and micro plasticity deformation of sample under uniaxial tension was discussed… More >

  • Open AccessOpen Access

    ABSTRACT

    Sequential scale-up scheme to describe graphene-flow-interaction: from atomistic to sub-continuum

    Yohei Inoue, Taishi Nakamura, Shuji Ogata, Ryo Kobayashi, Toshiyuki Gotoh
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 49-50, 2011, DOI:10.3970/icces.2011.020.049
    Abstract No proper simulation method exists in between the molecular simulation method at nanometer scale using the first principles or empirical inter-molecular interaction and the continuum simulation method at micrometer-plus scale. The nanotechnology deals principally with those systems whose characteristic scales reside in such a scale-gap. Considering this, we develop a sequential scale-up scheme starting from the atomistic up to micrometer-plus scales. In the present paper we take, as an example, the system of graphenes that may or may not be fluttering in airflow, and apply to it our sequential scale-up scheme to see its capability.

    The graphene is unique… More >

  • Open AccessOpen Access

    ABSTRACT

    A Three-Dimensional Shield Tunnel Model Based on Generalized-FEM

    Lin Yifeng, Zhu Hehua, Cai Yongcang
    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.020.051
    Abstract Shield tunnel linings compose of segments , bolts, liners, et.al., which are quite different in geometry and mechanics. Traditional beam-spring joint model and shell-spring joint model is hard to simulate accurately the detailed characteristic. Classical three-dimensional FEM may cause serious mesh-generation difficulty and expensive calculation cost. Based on generalized finite element method and characteristics of shield tunnel, a three-dimensional shield tunnel structure model is established. In the proposed model a sixteen-node solid-shell generalized FE is devised and employed to simulate segments. Joints between segments or rings are modeled with a surface to surface contact generalized FE which comprise hidden-bolts and… More >

Per Page:

Share Link

WeChat scan