Open Access
ABSTRACT
Dae Kyeom Park, Do Kyun Kim, Dong Hee Park, Bong Ju Kim, Jeom Kee Paik, Satya N. Atluri
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 65-66, 2011, DOI:10.3970/icces.2011.019.065
Abstract The global warming has reduced the extent of ice in Arctic region and brought some environmental issues including the rising of sea level and the changing of ecosystem. On the other hand, it is also true that the possibility of using Arctic sea route by trading ships and of developing the subsea resource in the Arctic region by offshore installations is increasingly growing due to the global warming. There are still a lot of challenging issues to be resolved for robust design of ships and offshore structures operating in Arctic region.
The aims of the present study can be… More >
Open Access
ABSTRACT
Du Chan Kim, Sang Jin Kim, Jung Kwan Seo, Bong Ju Kim, Jeom Kee Paik, Satya N. Atluri
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.019.067
Abstract In offshore plant and FPSO topsides, the probability against fire hazard is existed due to complicated processing such as production, storage and offloading oil and gas. High temperature and heat flux from fire accident cause a serious damage on human, environment and primary structures.
The aim of this study is to analyze behaviors and reduction effect of thermal radiation by various heat shields through computational and experimental method.
In this test, flat plate type, corrugated plate type, perforated plate type and wire mesh type heat shield were used. Heat flux and temperature were measured at locations behind the… More >
Open Access
ABSTRACT
Ju Hye Park, Jeom Kee Paik, S.N. Atluri
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 69-70, 2011, DOI:10.3970/icces.2011.019.069
Abstract The aim of the present paper is to develop a semi-analytical method which and quickly and accurately compute the ultimate strength response of rectangular plates under combined loads and non-uniform lateral pressure. It is assumed that the plating is simply supported at four edges which are kept straight. A unique feature of developed method was found to give reasonably accurate results for practical design purpose in terms of the large deflection analysis of plates under non uniformed lateral pressure. The present paper treated by analytically solving the nonlinear governing differential equations of the elastic large deflection plate theory. It will… More >
Open Access
ABSTRACT
Sang Jin Kim, Dae Hyun Kim, Du Chan Kim, Jung Min Sohn, Jung KwanSeo, Bong Ju Kim, Jeom Kee Paik, S.N. Atluri
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 71-72, 2011, DOI:10.3970/icces.2011.019.071
Abstract The movement of various cargos is needed due to rise of global container traffics. Ships are ideal vehicles for transportation and have many construction types such as container ship, bulk carrier, oil tanker, and car carrier. Ships like these are serviced all over the world. Ships are subjected to various environmental loads during operation. To sustain these various loads, ships should be designed guaranteeing structural safety and economical efficiency as well.
Stiffened panels consist of plates and supporting members and are commonly used in the ship building and ocean engineering industry. Ship structures are normally exposed to uniaxial, biaxial… More >
Open Access
ABSTRACT
Sanghyun Shim, Kwangjin Kim, Sangchul Lee, Sangho Ko, Jayoung Kang, Dongyoung Rew, Gwanghyeok Ju
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 73-74, 2011, DOI:10.3970/icces.2011.019.073
Abstract The aim of this paper is to discuss the main issues related to modeling and simulation of the Korean lunar module. Lunar module usually consists of a rigid platform, attitude control actuators and a fuel tank. For dynamical modeling, we first assumed the lunar module as a rigid body and derived equations of motion by considering allocation of reaction thrusters and reaction wheel assembly(RWA). Fuel sloshing in lunar module and its influence on attitude dynamics are an important issue in the research field of space technology. In order to include the effect of fuel sloshing on the dynamics, we model… More >
Open Access
ABSTRACT
Duning Li, Yufeng Niei?a, Xuemei Zhou, Li Cai
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 75-76, 2011, DOI:10.3970/icces.2011.019.075
Abstract In this study, the efficient discrete model including the resin infusion and the fiber compaction is developed to simulate the RFI (resin film infusion) process. The non-linear governing equations are derived by the Darcy's law, the Terzaghi's law and the continuity equations. The finite element method and the finite difference method are used to discretize the proposed equations, and the VOF method is used to track the filling front. Compared with the analytical results of Park, our numerical results agree well with them. Furthermore, we analyze the RFI process of BMI/G0814, and simulate the resin pressure, the fiber volume fraction… More >
Open Access
ABSTRACT
Nobuko Ohba, Shuji Ogata
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 77-78, 2011, DOI:10.3970/icces.2011.019.077
Abstract We have been developing the concurrent-type, hybrid quantum-classical simulation scheme for various atomic processes at liquid-solid interfaces [1]. In this scheme, the density-functional theory (DFT) method is applied to the "quantum" region to calculate the electronic structure; while the semi-empirical inter-atomic potential, to the "classical" region. In this talk we review its recent developments both from methodology and application viewpoints.
In the hybrid simulation, the DFT method that is applied at each time-step to a cluster of typically a hundred atoms (i.e., the QM region) consumes most of the computation power. It is highly desirable to develop a less… More >
Open Access
ABSTRACT
Du Qinghai, Cui Weicheng, Wang Yongjun
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 79-80, 2011, DOI:10.3970/icces.2011.019.079
Abstract The spherical shell is a typical form of revolution shells, which is widely used in pressure vessel and piping industry, nuclear power industry and ocean engineering for its specific structural shape to obtain kinds of performance. However compared to the cylindrical or conical shell, the spherical shell is mainly used as main structure or pressure hull in underwater engineering because of the superiority of theoretical solution and its manufacture. For the significance of the spherical shell, many researchers in the region of engineering and mechanics have spent great efforts to solve it and do lots of experiments in order to… More >
Open Access
ABSTRACT
Victor A. Eremeyev
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 81-82, 2011, DOI:10.3970/icces.2011.019.081
Abstract The aim of this work is to discuss the nonlinear theory of shells made of material undergoing phase transitions (PT). The interest to mechanics and thermodynamics of thin-walled structures with PT is motivated by the recent investigations of thin martensitic films and biological membranes. Here we present statements of the boundary-value problems of shells and plates with PT within the dynamically and kinematically exact theory of shells. In this shell theory the translation and rotation fields are the kinematically independent variables. The theoretical model is illustrated by the examples of thin circular cylindrical shell and circular plate made of two-phase… More >
Open Access
ABSTRACT
A. Takayama, S. Saito, A. M. Ito, S. Yonemura, H. Nakamura
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 83-84, 2011, DOI:10.3970/icces.2011.019.083
Abstract We have been developing a molecular dynamics (MD) simulation code, a binary collision approximation (BCA) based simulation code, and a BCA-MD hybrid simulation code. In this paper, an overview of the codes is presented. BCA-based simulation results of hydrogen isotopes injection into graphite target are also shown. Detailed description is given as a full abstract. More >