Open Access iconOpen Access

ARTICLE

crossmark

SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management

Ana María Peco Chacón, Isaac Segovia Ramírez, Fausto Pedro García Márquez*

Ingenium Research Group, Universidad Castilla-La Mancha, Ciudad Real, 13071, Spain

* Corresponding Author: Fausto Pedro García Márquez. Email: email

(This article belongs to the Special Issue: Data Analytics for Critical Infrastructures)

Intelligent Automation & Soft Computing 2023, 37(3), 2595-2608. https://doi.org/10.32604/iasc.2023.037277

Abstract

Maintenance operations have a critical influence on power generation by wind turbines (WT). Advanced algorithms must analyze large volume of data from condition monitoring systems (CMS) to determine the actual working conditions and avoid false alarms. This paper proposes different support vector machine (SVM) algorithms for the prediction and detection of false alarms. K-Fold cross-validation (CV) is applied to evaluate the classification reliability of these algorithms. Supervisory Control and Data Acquisition (SCADA) data from an operating WT are applied to test the proposed approach. The results from the quadratic SVM showed an accuracy rate of 98.6%. Misclassifications from the confusion matrix, alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm. The classifier reduces the number of false alarms called misclassifications by 25%. These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification.

Keywords


Cite This Article

APA Style
Chacón, A.M.P., Ramírez, I.S., Márquez, F.P.G. (2023). SCADA data-based support vector machine for false alarm identification for wind turbine management. Intelligent Automation & Soft Computing, 37(3), 2595-2608. https://doi.org/10.32604/iasc.2023.037277
Vancouver Style
Chacón AMP, Ramírez IS, Márquez FPG. SCADA data-based support vector machine for false alarm identification for wind turbine management. Intell Automat Soft Comput . 2023;37(3):2595-2608 https://doi.org/10.32604/iasc.2023.037277
IEEE Style
A.M.P. Chacón, I.S. Ramírez, and F.P.G. Márquez, “SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management,” Intell. Automat. Soft Comput. , vol. 37, no. 3, pp. 2595-2608, 2023. https://doi.org/10.32604/iasc.2023.037277



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 866

    View

  • 361

    Download

  • 0

    Like

Share Link