Open Access iconOpen Access

ARTICLE

crossmark

Hyper-Heuristic Task Scheduling Algorithm Based on Reinforcement Learning in Cloud Computing

Lei Yin1, Chang Sun2, Ming Gao3, Yadong Fang4, Ming Li1, Fengyu Zhou1,*

1 School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
2 School of Software, Shandong University, Jinan, 250101, Shandong, China
3 Academy of Intelligent Innovation, Shandong University, Shunhua Road, Jinan, 250101, Shandong, China
4 Inspur Cloud Information Technology Co., Ltd., Inspur Group, Jinan, 250101, Shandong, China

* Corresponding Author: Fengyu Zhou. Email: email

Intelligent Automation & Soft Computing 2023, 37(2), 1587-1608. https://doi.org/10.32604/iasc.2023.039380

Abstract

The solution strategy of the heuristic algorithm is pre-set and has good performance in the conventional cloud resource scheduling process. However, for complex and dynamic cloud service scheduling tasks, due to the difference in service attributes, the solution efficiency of a single strategy is low for such problems. In this paper, we presents a hyper-heuristic algorithm based on reinforcement learning (HHRL) to optimize the completion time of the task sequence. Firstly, In the reward table setting stage of HHRL, we introduce population diversity and integrate maximum time to comprehensively determine the task scheduling and the selection of low-level heuristic strategies. Secondly, a task computational complexity estimation method integrated with linear regression is proposed to influence task scheduling priorities. Besides, we propose a high-quality candidate solution migration method to ensure the continuity and diversity of the solving process. Compared with HHSA, ACO, GA, F-PSO, etc, HHRL can quickly obtain task complexity, select appropriate heuristic strategies for task scheduling, search for the the best makspan and have stronger disturbance detection ability for population diversity.

Keywords


Cite This Article

APA Style
Yin, L., Sun, C., Gao, M., Fang, Y., Li, M. et al. (2023). Hyper-heuristic task scheduling algorithm based on reinforcement learning in cloud computing. Intelligent Automation & Soft Computing, 37(2), 1587-1608. https://doi.org/10.32604/iasc.2023.039380
Vancouver Style
Yin L, Sun C, Gao M, Fang Y, Li M, Zhou F. Hyper-heuristic task scheduling algorithm based on reinforcement learning in cloud computing. Intell Automat Soft Comput . 2023;37(2):1587-1608 https://doi.org/10.32604/iasc.2023.039380
IEEE Style
L. Yin, C. Sun, M. Gao, Y. Fang, M. Li, and F. Zhou, “Hyper-Heuristic Task Scheduling Algorithm Based on Reinforcement Learning in Cloud Computing,” Intell. Automat. Soft Comput. , vol. 37, no. 2, pp. 1587-1608, 2023. https://doi.org/10.32604/iasc.2023.039380



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 982

    View

  • 518

    Download

  • 0

    Like

Share Link