Open Access iconOpen Access

ARTICLE

crossmark

Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System

N. Kanagaraj1,*, Obaid Aldosari1, M. Ramasamy2, M. Vijayakumar2

1 Electrical Engineering Department, College of Engineering in Wadi Al-dawasir, Prince Sattam Bin Abdulaziz University, Wadi Al-dawasir, 11991, Saudi Arabia
2 Department of Electrical and Electronics Engineering, K. S. R. College of Engineering, Tiruchengode, 637215, India

* Corresponding Author: N. Kanagaraj. Email: email

(This article belongs to the Special Issue: Fuzzy Soft Computing for Real-time Complex Applications)

Intelligent Automation & Soft Computing 2023, 37(2), 2291-2306. https://doi.org/10.32604/iasc.2023.039101

Abstract

The generation of electricity, considering environmental and economic factors is one of the most important challenges of recent years. In this article, a thermoelectric generator (TEG) is proposed to use the thermal energy of an electric water heater (EWH) to generate electricity independently. To improve the energy conversion efficiency of the TEG, a fuzzy logic controller (FLC)-based perturb & observe (P&O) type maximum power point tracking (MPPT) control algorithm is used in this study. An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers. Also, a significant amount of thermal energy generated by EWH is wasted every day, especially during the winter season. In recent years, TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity. In this context, the proposed model is designed to use the thermal energy stored in the EWH to generate electricity. In addition, the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption. The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level. To validate the usefulness of the proposed scheme, a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions. The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH. It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG. Moreover, the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.

Keywords


Cite This Article

APA Style
Kanagaraj, N., Aldosari, O., Ramasamy, M., Vijayakumar, M. (2023). Enhanced perturb and observe control algorithm for a standalone domestic renewable energy system. Intelligent Automation & Soft Computing, 37(2), 2291-2306. https://doi.org/10.32604/iasc.2023.039101
Vancouver Style
Kanagaraj N, Aldosari O, Ramasamy M, Vijayakumar M. Enhanced perturb and observe control algorithm for a standalone domestic renewable energy system. Intell Automat Soft Comput . 2023;37(2):2291-2306 https://doi.org/10.32604/iasc.2023.039101
IEEE Style
N. Kanagaraj, O. Aldosari, M. Ramasamy, and M. Vijayakumar, “Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System,” Intell. Automat. Soft Comput. , vol. 37, no. 2, pp. 2291-2306, 2023. https://doi.org/10.32604/iasc.2023.039101



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 642

    View

  • 399

    Download

  • 0

    Like

Share Link