Open Access
ARTICLE
Enhanced Crow Search with Deep Learning-Based Cyberattack Detection in SDN-IoT Environment
1 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
2 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
3 Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Mecca, Saudi Arabia
4 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
5 Research Centre, Future University in Egypt, New Cairo, 11845, Egypt
6 Department of Information System, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, AlKharj, 16436, Saudi Arabia
* Corresponding Author: Abdelwahed Motwakel. Email:
Intelligent Automation & Soft Computing 2023, 36(3), 3157-3173. https://doi.org/10.32604/iasc.2023.034908
Received 31 July 2022; Accepted 14 November 2022; Issue published 15 March 2023
Abstract
The paradigm shift towards the Internet of Things (IoT) phenomenon and the rise of edge-computing models provide massive potential for several upcoming IoT applications like smart grid, smart energy, smart home, smart health and smart transportation services. However, it also provides a sequence of novel cyber-security issues. Although IoT networks provide several advantages, the heterogeneous nature of the network and the wide connectivity of the devices make the network easy for cyber-attackers. Cyberattacks result in financial loss and data breaches for organizations and individuals. So, it becomes crucial to secure the IoT environment from such cyberattacks. With this motivation, the current study introduces an effectual Enhanced Crow Search Algorithm with Deep Learning-Driven Cyberattack Detection (ECSADL-CAD) model for the Software-Defined Networking (SDN)-enabled IoT environment. The presented ECSADL-CAD approach aims to identify and classify the cyberattacks in the SDN-enabled IoT environment. To attain this, the ECSADL-CAD model initially pre-processes the data. In the presented ECSADL-CAD model, the Reinforced Deep Belief Network (RDBN) model is employed for attack detection. At last, the ECSA-based hyperparameter tuning process gets executed to boost the overall classification outcomes. A series of simulations were conducted to validate the improved outcomes of the proposed ECSADL-CAD model. The experimental outcomes confirmed the superiority of the proposed ECSADL-CAD model over other existing methodologies.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.