Open Access iconOpen Access

ARTICLE

crossmark

Political Optimizer with Probabilistic Neural Network-Based Arabic Comparative Opinion Mining

Najm Alotaibi1, Badriyya B. Al-onazi2, Mohamed K. Nour3, Abdullah Mohamed4, Abdelwahed Motwakel5,*, Gouse Pasha Mohammed5, Ishfaq Yaseen5, Mohammed Rizwanullah5

1 Prince Saud AlFaisal Institute for Diplomatic Studies, Riyadh, 13369, Saudi Arabia
2 Department of Language Preparation, Arabic Language Teaching Institute, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
3 Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Makkah, 24211, Saudi Arabia
4 Research Centre, Future University in Egypt, New Cairo, 11845, Egypt
5 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, AlKharj, 16242, Saudi Arabia

* Corresponding Author: Abdelwahed Motwakel. Email: email

Intelligent Automation & Soft Computing 2023, 36(3), 3121-3137. https://doi.org/10.32604/iasc.2023.033915

Abstract

Opinion Mining (OM) studies in Arabic are limited though it is one of the most extensively-spoken languages worldwide. Though the interest in OM studies in the Arabic language is growing among researchers, it needs a vast number of investigations due to the unique morphological principles of the language. Arabic OM studies experience multiple challenges owing to the poor existence of language sources and Arabic-specific linguistic features. The comparative OM studies in the English language are wide and novel. But, comparative OM studies in the Arabic language are yet to be established and are still in a nascent stage. The unique features of the Arabic language make it essential to expand the studies regarding the Arabic text. It contains unique features such as diacritics, elongation, inflection and word length. The current study proposes a Political Optimizer with Probabilistic Neural Network-based Comparative Opinion Mining (POPNN-COM) model for the Arabic text. The proposed POPNN-COM model aims to recognize comparative and non-comparative texts in Arabic in the context of social media. Initially, the POPNN-COM model involves different levels of data pre-processing to transform the input data into a useful format. Then, the pre-processed data is fed into the PNN model for classification and recognition of the data under different class labels. At last, the PO algorithm is employed for fine-tuning the parameters involved in this model to achieve enhanced results. The proposed POPNN-COM model was experimentally validated using two standard datasets, and the outcomes established the promising performance of the proposed POPNN-COM method over other recent approaches.

Keywords


Cite This Article

APA Style
Alotaibi, N., Al-onazi, B.B., Nour, M.K., Mohamed, A., Motwakel, A. et al. (2023). Political optimizer with probabilistic neural network-based arabic comparative opinion mining. Intelligent Automation & Soft Computing, 36(3), 3121-3137. https://doi.org/10.32604/iasc.2023.033915
Vancouver Style
Alotaibi N, Al-onazi BB, Nour MK, Mohamed A, Motwakel A, Mohammed GP, et al. Political optimizer with probabilistic neural network-based arabic comparative opinion mining. Intell Automat Soft Comput . 2023;36(3):3121-3137 https://doi.org/10.32604/iasc.2023.033915
IEEE Style
N. Alotaibi et al., “Political Optimizer with Probabilistic Neural Network-Based Arabic Comparative Opinion Mining,” Intell. Automat. Soft Comput. , vol. 36, no. 3, pp. 3121-3137, 2023. https://doi.org/10.32604/iasc.2023.033915



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 889

    View

  • 705

    Download

  • 0

    Like

Share Link