Open Access
ARTICLE
Automated Disabled People Fall Detection Using Cuckoo Search with Mobile Networks
Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam bin Abdulaziz University, Saudi Arabia
* Corresponding Author: Mesfer Al Duhayyim. Email:
Intelligent Automation & Soft Computing 2023, 36(3), 2473-2489. https://doi.org/10.32604/iasc.2023.033585
Received 21 June 2022; Accepted 26 October 2022; Issue published 15 March 2023
Abstract
Falls are the most common concern among older adults or disabled people who use scooters and wheelchairs. The early detection of disabled persons’ falls is required to increase the living rate of an individual or provide support to them whenever required. In recent times, the arrival of the Internet of Things (IoT), smartphones, Artificial Intelligence (AI), wearables and so on make it easy to design fall detection mechanisms for smart homecare. The current study develops an Automated Disabled People Fall Detection using Cuckoo Search Optimization with Mobile Networks (ADPFD-CSOMN) model. The proposed model’s major aim is to detect and distinguish fall events from non-fall events automatically. To attain this, the presented ADPFD-CSOMN technique incorporates the design of the MobileNet model for the feature extraction process. Next, the CSO-based hyperparameter tuning process is executed for the MobileNet model, which shows the paper’s novelty. Finally, the Radial Basis Function (RBF) classification model recognises and classifies the instances as either fall or non-fall. In order to validate the betterment of the proposed ADPFD-CSOMN model, a comprehensive experimental analysis was conducted. The results confirmed the enhanced fall classification outcomes of the ADPFD-CSOMN model over other approaches with an accuracy of 99.17%.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.