Open Access
ARTICLE
A Joint Optimization Algorithm for Renewable Energy System
1 Department of Electrical Engineering, University of Engineering and Technology, Peshawar, 814, Pakistan
2 School of Engineering & the Built Environment, Edinburgh Napier University, Merchiston Campus, 10 Colinton Road, Edinburgh, EH105DT, Scotland, UK
3 Departamento de Ingenieria Eléctrica, Universidad Técnica Federico Santa Maria, Santiago, 8940000, Chile
4 Department of Electrical and Electronics Engineering, Jubail Industrial College, P O Box 10099, Jubail 31961, Saudi Arabia
5 University of South-Eastern Norway, Bredalsveien, 14, 3511, Hønefoss, Norway
* Corresponding Author: Dag Øivind Madsen. Email:
Intelligent Automation & Soft Computing 2023, 36(2), 1979-1989. https://doi.org/10.32604/iasc.2023.034106
Received 07 July 2022; Accepted 08 August 2022; Issue published 05 January 2023
Abstract
Energy sustainability is a hot topic in both scientific and political circles. To date, two alternative approaches to this issue are being taken. Some people believe that increasing power consumption is necessary for countries’ economic and social progress, while others are more concerned with maintaining carbon consumption under set limitations. To establish a secure, sustainable, and economical energy system while mitigating the consequences of climate change, most governments are currently pushing renewable growth policies. Energy markets are meant to provide consumers with dependable electricity at the lowest possible cost. A profit-maximization optimal decision model is created in the electric power market with the combined wind, solar units, loads, and energy storage systems, based on the bidding mechanism in the electricity market and operational principles. This model utterly considers the technological limits of new energy units and storages, as well as the involvement of new energy and electric vehicles in market bidding through power generation strategy and the output arrangement of the virtual power plant’s coordinated operation. The accuracy and validity of the optimal decision-making model of combined wind, solar units, loads, and energy storage systems are validated using numerical examples. Under multi-operating scenarios, the effects of renewable energy output changes on joint system bidding techniques are compared.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.